Document details

Cadomian/Pan-African consolidation of the Iberian Massif assessed by its detrital and inherited zircon populations: is the similar to 610Ma age peak a persistent Cadomian magmatic inheritance or the key to unravel its Pan-African basement?

Author(s): Chichorro, Martim ; Solá, A. Rita ; Santos, Telmo M. Bento Dos ; Amaral, Joao Lains

Date: 2022

Persistent ID: http://hdl.handle.net/10400.9/3987

Origin: Repositório do LNEG

Project/scholarship: info:eu-repo/grantAgreement/FCT/OE/SFRH%2FBD%2F138791%2F2018/PT; info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50019%2F2020/PT;

Subject(s): Pan-African; Cadomian; Inherited zircon; Peri-Gondwanan; Iberian massif


Description

ABSTRACT: This work assessed the age distribution of Cadomian/Pan-African orogenic events (550-590 and 605-790Ma, respectively) in several zones of Iberian Massif by means of detrital and inherited zircon analysis compilation. Detrital zircon age spectra show that throughout the late Neoproterozoic-to-Early Ordovician era (similar to 120Ma sedimentary record), the main systematic peak occurs at similar to 610Ma, followed by peaks at typical Cadomian ages (similar to 590-550Ma). Inherited zircons incorporated in Cambrian-to-Lower Ordovician igneous rocks show typical Cadomian ages (similar to 590-550Ma) but, once again, a remarkably consistent Pan-African similar to 610Ma peak occurs. In accordance with compiled zircon data and taking into account the evidence of North African peri-cratonic inliers, Ediacaran (similar to 610Ma) zircons incorporated in Paleozoic magmas provide indirect evidence of Pan-African magmatism, suggesting that these magmas and synorogenic sediments are likely to constitute the cryptic stratigraphic infrastructure of most of the Iberian Massif. The main source of similar to 610Ma inherited zircons may be the lateral chrono-equivalents of the Saghro and Bou Salda-M'Gouna Groups (Anti-Atlas, Morocco) and/or coeval igneous rocks from West African Craton or Trans-Sahara Belt, emplaced at a stratigraphic level below the late-Ediacaran sediments of the Ossa Morena Zone and the Central Iberian Zone. Assuming that the Iberian crust is a fragment of the Pan-African orogen, a relative paleoposition situated between the West African Craton and the Trans-Saharan Belt during the Late Neoproterozoic is proposed. The closed-system behaviour of Stenian-Tonian detrital zircon ages in the Trans-Sahara Belt suggests that this mega-cordillera acted as a barrier, in paleogeographic terms, to separating the Sahara Metacraton from Iberia. In Iberia, the opening of the system to Stenian-Tonian detrital zircon during the Ordovician indicates that, at that time, the Trans-Saharan Belt had already become a vast peneplain, which favoured a large drainage system with a long-distance transport mechanism that fed the passive continental margins.

Document Type Journal article
Language English
Contributor(s) Repositório do LNEG
CC Licence
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents