Document details

Routes to advance vascularized bone tissue engineering constructs

Author(s): Mihaila, Silvia Maria

Date: 2015

Persistent ID: http://hdl.handle.net/1822/36397

Origin: RepositóriUM - Universidade do Minho

Subject(s): 611-018.4; 61:620.1; 620.1.61; Engenharia e Tecnologia::Outras Engenharias e Tecnologias


Description

Tese de Doutoramento em Bioengenharia

One of tissue engineering (TE) challenges concerns the vascularization of engineered constructs upon implantation into the defect. In fact, for the survival of the engineered tissue beyond the oxygen diffusion limit, the formation of new blood vessels is mandatory. Therefore, this thesis aimed at designing routes towards advanced vascularized bone analogs, based on the combination of cells, biomaterials and inorganic components. The major objectives of this thesis were 1) to identify a single cell source to obtain both endothelial (ECs) and osteoblast-like cells (OBs); 2) to identify the optimal conditions in which these cells synergistically communicate; 3) to trigger the osteogenic differentiation of stem/stromal cells by inorganic osteoinducers and 4) to design 3D hydrogel systems for the controlled spatial distribution of cells. The use of adipose tissue (AT) as a cell pool for TE purposes is highly appealing, since its stromal vascular fraction (SVF) contains stem/stromal-like cells (hASCs) that can be differentiated into specific lineages, enhancing their potential use in a clinical setting. Under this context, the SSEA-4+ cellular subset of SVF (SSEA-4+hASCs) was proven to hold enhanced differentiation potential into ECs- and OBs-like cells, the most relevant cell types for bone vascularization TE routes. Using immunomagnetic selection tools, SSEA-4+hASCs were successfully separated and differentiated towards both endothelial and osteogenic lineages. Furthermore, it was found that culturing these obtained ECs and pre-OBs at an initial ratio of 75:25 in a mixture of standard endothelial and osteogenic media, cells synergistically communicate to encourage the full differentiation of pre-OBs and the maintenance of ECs phenotype. Culturing SSEA-4+hASCs in presence of sNPs in basal condition lead to the deposition of a collagen-enriched matrix relevant for bone TE. When in combination with standard osteogenic factors, sNPs were able to significantly increase the osteogenic commitment of both hMSCs and SSEA-4+hASCs. Finally, to address the tri-dimensionality of the bone, hydrogels templates, based on kappa-carrageenan (κ-CA) and chitosan (CHT), were designed to accommodate SSEA-4+hASCs-derived ECs and OBs. The CHT coated κ-CA hydrogel microfibers, arranged in such a fashion to mimic the blood vessel network, were able to support the endothelial signature of entrapped ECs. These, upon assembly within a pre-OBs loaded matrix, are appealing to be templates to attain a 3D microvascular network. By decorating κ-CA with photocrosslinkable units, hydrogels with tunable mechanical properties and high recovery rates after deformation we obtained. The controlled spatial distribution of cells was achieved by patterning the hydrogels in well-defined geometries. In summary, the research work described in this thesis addressed new strategies within the TE field that might inspire the development of improved vascularized bone-engineered constructs. The use of SSEA-4+hASCs was proven to be an endearing choice of undifferentiated cells, while their combination with sNPs and κ-CA hydrogels displayed numerous advantages. Nonetheless, the unraveling of the real potential of these cells, alone or in combination with sNPs and/or κ-CA hydrogels, towards promoting vascularized bone formation yet requires in vivo confirmation.

Um dos desafios da engenharia de tecidos consiste na vascularização após a implantação do implante no defeito. De facto, para a sobrevivência do substituto do tecido é essencial a difusão de oxigénio assim como a formação de novos vasos sanguíneos. Portanto, esta tese explora novas estratégias para o desenvolvimento de análogos de osso vascularizado, com base na combinação de células, biomateriais e componentes inorgânicos. Os objetivos principais desta tese foram: 1) identificar uma única fonte celular para obter tanto as células endoteliais (ECs), como as osteoblastos (OBs); 2) identificar as condições ideais em que estas células comunicam de uma forma sinérgica; 3) desencadear a diferenciação osteogénica das células estaminais através dos osteoindutores inorgânicos e 4) projetar sistemas de hidrogéis em 3D para controlar a distribuição espacial das células. O uso do tecido adiposo como uma fonte de células é altamente atraente para engenharia de tecidos. As células estaminais derivadas do tecido adiposo (hASCs) podem ser diferenciadas em linhagens específicas, melhorando assim o seu potencial para aplicações clínicas. Neste contexto, a população SSEA-4+, identificada na fração vascular do tecido adiposo (SSEA-4+hASCs), foi a que demonstrou melhor potencial de diferenciação em células endoteliais (ECs) e osteoblastos (OBs), as células mais envolvidas na vascularização óssea. Usando ferramentas de seleção imunomagnéticas, as SSEA-4+hASCs foram separadas e diferenciadas em ambas linhagens: endotelial e osteogénica. Além disso, verificou-se que a cultura de ECs e pré-OBs numa razão inicial de 75:25, num meio de cultura misto, levou a uma comunicação celular sinérgica, incentivando a diferenciação completa das pré-OBs e a manutenção do fenótipo endotelial das ECs. A cultura das SSEA-4+hASCs na presença de nanopartículas de silica (SNPs) num meio basal, levou à deposição de uma matriz enriquecida em colagénio, essencial na regeneração óssea. Em combinação com fatores osteogénicos, as SNPs foram capazes de significativamente aumentar o compromisso osteogénico de ambas as células mesenquimais humanas e SSEA-4+hASCs. Finalmente, para resolver a tridimensionalidade do osso, modelos 3D com base em hidrogéis de kappa-carragenina (κ-CA) e quitosano (CHT), foram desenvolvidos para acomodar as ECs e OBs. Microfibras de κ-CA revestidas com CHT, dispostas de tal forma que mimetizam a rede vascular, foram capazes de manter a assinatura endotelial das ECs. Após o arranjo dentro de uma matriz enriquecida em pré-OBs, espera-se que agissem como padrões para gerir uma rede microvascular funcional. Seguinte, a decoração da κ- CA com unidades foto-reticulaveis rendeu hidrogéis com propriedades mecânicas ajustáveis e altas taxas de recuperação após a deformação. Uma distribuição controlada de células foi obtido por patterning em geometrias bem definidas. Em resumo, o trabalho de investigação descrito nesta tese propõe novas estratégias dentro da engenharia de tecidos que podem inspirar o desenvolvimento de construções de osso vascularizado. O uso das SSEA-4+hASCs provou ser uma escolha cativante de células não diferenciadas, enquanto a combinação com SNPs e hidrogéis de κ-CA exibiu várias vantagens. No entanto, o desenrolar do verdadeiro potencial destas células, individualmente ou em combinação com SNPs e/ou hidrogéis de κ-CA, no sentido de promover a formação de tecido ósseo vascularizado, ainda requer confirmação in vivo.

Foundation for Science and Technology (FTC) and MIT- doctoral grant (SFRH/BD/42968/2008).

Document Type Doctoral thesis
Language English
Advisor(s) Gomes, Manuela E.; Marques, Alexandra P.
Contributor(s) Universidade do Minho
facebook logo  linkedin logo  twitter logo 
mendeley logo