Document details

Modelação do processo de moldação por injecção utilizando redes neuronais artif...

Author(s): Reis, Daniel da Cunha cv logo 1

Date: 2007

Persistent ID: http://hdl.handle.net/10773/2432

Origin: RIA - Repositório Institucional da Universidade de Aveiro

Subject(s): Engenharia mecânica; Moldagem por injecção; Redes neuronais; Termoplásticos


Description
Neste trabalho foi desenvolvido um modelo baseado em redes neuronais que permite prever o comportamento da pressão de injecção dentro da cavidade em função das variáveis do processo, para um determinado material. Baseado em trabalhos que decorreram nos últimos dois anos no Departamento de Engenharia Mecânica foi usado um molde instrumentado com um sensor de pressão acoplado a um sistema de aquisição de dados que permite monitorar em tempo real, a pressão na cavidade do molde bem como também algumas variáveis importantes para o processo de injecção como são a pressão hidráulica e a velocidade de injecção. Tendo sido a temperatura do termoplástico simulada com o software Moldflow®. Para o efeito foi utilizada uma máquina de injecção de termoplásticos, EuroInj D65. Foram treinadas com o algoritmo Backpropagation com a estratégia de Levenberg-Marquadt, 3002 configurações diferentes de redes neuronais possuindo no máximo, cinco camadas e 10 neurónios por camada. Inicialmente as redes foram treinadas para um caso específico, e posteriormente, para todos os casos. Como seria se esperar, a sua capacidade de generalização aumenta com o aumento do número de exemplos com que a rede é treinada. Também o valor máximo da pressão dentro da cavidade foi obtido com um erro de 0.3%, o que representa um valor muito fiável, podendo portanto afirmar-se que será possível, a partir destes resultados, estabelecer procedimentos futuros no que concerne a previsão da qualidade do processo de obtenção de peças por injecção por moldação. ABSTRACT: In this project, a model based on neural networks which predicts the behavior of the injection pressure in the interior of the mould cavity depending on the variables of the process for a certain raw material, was developed. Based on experiments, carried out in the last two years, in the Department of Mechanical Engineering, a mould with a pressure sensor and an acquisition software, which allows the user to monitor the pressure inside the mould’s cavity, but also other relevant variables for the process, such as hydraulic pressure and injection velocity, was used. The thermoplastic temperature was simulated with Moldflow® software. The injection machine used was an EuroInjD65. About 3002 different neural networks with a maximum of 5 layers and 10 neurons per each layer were trained. The best performance was achieved with the Levenberg-Marquadt algorithm. The cavity pressure evolution during cycle time was established within an error of 0.3%, which can be said to be an acceptable error. Furthermore, it can be said that, with the results obtained, further work can be undertaken in order to establish injection molding process control routines. Mestrado em Engenharia Mecânica
Document Type Master Thesis
Language Portuguese
Advisor(s) Ferreira, Jorge; Oliveira, Mónica Sandra Abrantes de
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents