Detalhes do Documento

Deep convolutional neural networks applied to hand keypoints estimation

Autor(es): Santos, Bruno M. ; Pais, Pedro ; Ribeiro, Francisco M. ; Lima, José ; Goncalves, Gil ; Pinto, Vítor H.

Data: 2023

Identificador Persistente: http://hdl.handle.net/10198/21876

Origem: Biblioteca Digital do IPB

Assunto(s): Hand keypoints estimation; Convolutional neural network; VGG; FreiHAND


Descrição

Accurate estimation of hand shape and position is an important task in various applications, such as human-computer interaction, human-robot interaction, and virtual and augmented reality. In this paper, it is proposed a method to estimate the hand keypoints from single and colored images utilizing the pre-trained deep convolutional neural networks VGG-16 and VGG-19. The method is evaluated on the FreiHAND dataset, and the performance of the two neural networks is compared. The best results were achieved by the VGG-19, with average estimation errors of 7.40 pixels and 11.36 millimeters for the best cases of two-dimensional and three-dimensional hand keypoints estimation, respectively.

Tipo de Documento Comunicação em conferência
Idioma Inglês
Contribuidor(es) Biblioteca Digital do IPB
Licença CC
facebook logo  linkedin logo  twitter logo 
mendeley logo

Documentos Relacionados

Não existem documentos relacionados.