Detalhes do Documento

Machine learning to identify olive-tree cultivars

Autor(es): Mendes, João ; Lima, José ; Costa, Lino ; Rodrigues, Nuno ; Brandão, Diego ; Leitão, Paulo ; Pereira, Ana I.

Data: 2022

Identificador Persistente: http://hdl.handle.net/10198/27263

Origem: Biblioteca Digital do IPB

Assunto(s): Machine learning; Identification; Leaf; Cultivars; Varieties


Descrição

The identification of olive-tree cultivars is a lengthy and expensive process, therefore, the proposed work presents a new strategy for identifying different cultivars of olive trees using their leaf and machine learning algorithms. In this initial case, four autochthonous cultivars of the Trás-os-Montes region in Portugal are identified (Cobrançosa, Madural, Negrinha e Verdeal). With the use of this type of algorithm, it is expected to replace the previous techniques, saving time and resources for farmers. Three different machine learning algorithms (Decision Tree, SVM, Random Forest) were also compared and the results show an overall accuracy rate of the best algorithm (Random Forest) of approximately 93%.

Tipo de Documento Comunicação em conferência
Idioma Inglês
Contribuidor(es) Biblioteca Digital do IPB
Licença CC
facebook logo  linkedin logo  twitter logo 
mendeley logo

Documentos Relacionados