Detalhes do Documento

Fault identification in wind turbines: a data-centric machine learning approach

Autor(es): Pinna, Danielle ; Toso, Rodrigo ; Coutinho, Rafaelli ; Pereira, Ana I. ; Brandão, Diego

Data: 2022

Identificador Persistente: http://hdl.handle.net/10198/29263

Origem: Biblioteca Digital do IPB

Assunto(s): Wind turbine; Machine learning; Fault classification


Descrição

The last few years have been marked by the transition of the world energy matrix, predominantly with wind and solar sources considered clean energies. Wind turbines, responsible for the energy conversion process, are complex and expensive equipment susceptible to several failures due to multiple factors. Monitoring turbine components can assist in detecting failures before they occur, reducing equipment maintenance costs. This work compares machine learning techniques in a data-centric approach to wind turbine failure detection. Preliminary results demonstrate the importance of feature selection in this problem.

Tipo de Documento Comunicação em conferência
Idioma Inglês
Contribuidor(es) Biblioteca Digital do IPB
Licença CC
facebook logo  linkedin logo  twitter logo 
mendeley logo

Documentos Relacionados