Author(s):
Akerib, D. S. ; Alsum, S. ; Araújo, H. M. ; Bai, X. ; Balajthy, J. ; Baxter, A. ; Bernard, E. P. ; Bernstein, A. ; Biesiadzinski, T. P. ; Boulton, E. M. ; B. Boxer, B. ; Brás, P. ; Manalaysay, A. ; Marangou, N. ; McKinsey, D. N. ; Mei, D.-M. ; M. Moongweluwan, M. ; Morad, J. A. ; Murphy, A. St. J. ; Naylor, A. ; Nehrkorn, C. ; Nelson, H. N. ; Neves, F. ; Nilima, A. ; Oliver-Mallory, K. C. ; Palladino, K. J. ; Pease, E. K. ; Riffard, Q. ; Rischbieter, G. R. C. ; Rhyne, C. ; Rossiter, P. ; Shaw, S. ; Shutt, T. A. ; Silva, C. ; et al.
Date: 2021
Persistent ID: https://hdl.handle.net/10316/95851
Origin: Estudo Geral - Universidade de Coimbra
Description
11 pages, 6 figures
The Large Underground Xenon (LUX) dark matter search was a 250-kg active mass dual-phase time projection chamber that operated by detecting light and ionization signals from particles incident on a xenon target. In December 2015, LUX reported a minimum 90% upper C.L. of 6e-46 cm^2 on the spin-independent WIMP-nucleon elastic scattering cross section based on a 1.4e4 kg*day exposure in its first science run. Tension between experiments and the absence of a definitive positive detection suggest it would be prudent to search for WIMPs outside the standard spin-independent/spin-dependent paradigm. Recent theoretical work has identified a complete basis of 14 independent effective field theory (EFT) operators to describe WIMP-nucleon interactions. In addition to spin-independent and spin-dependent nuclear responses, these operators can produce novel responses such as angular-momentum-dependent and spin-orbit couplings. Here we report on a search for all 14 of these EFT couplings with data from LUX's first science run. Limits are placed on each coupling as a function of WIMP mass.