Document details

Evaluating the Effectiveness of Bayesian and Neural Networks for Adaptive Schedulling Systems

Author(s): Cunha, Bruno ; Madureira, Ana Maria ; Pereira, João Paulo ; Pereira, Ivo

Date: 2016

Persistent ID: http://hdl.handle.net/10400.22/10003

Origin: Repositório Científico do Instituto Politécnico do Porto

Subject(s): User Modelling; Human-Computer Interaction; Machine Learning; Scalable Intelligence; Scheduling Systems


Description

The ability to adjust itself to users’ profile is imperative in modern system, given that many people interact with a lot of information in different ways. The creation of adaptive systems is a complex domain that requires very specific methods and the integration of several intelligent techniques, from an intelligent systems development perspective. Designing an adaptive system requires planning and training of user modelling techniques combined with existing system components. Based on the architecture for user modelling on Intelligent and Adaptive Scheduling Systems, this paper presents an analysis of using the mentioned architecture to characterize user’s behaviours and a case study comparing the employment of different user classifiers. Bayesian and Artificial Neural Networks were selected as the elements of the computational study and this paper presents a description on how to prepare them to deal with user information.

Document Type Journal article
Language English
Contributor(s) REPOSITÓRIO P.PORTO
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents