Document details

Circulating cell-free DNA methylation mirrors alterations in cerebral patterns in epilepsy

Author(s): Martins-Ferreira, Ricardo ; Leal, Bárbara ; Chaves, João ; Ciudad, Laura ; Samões, Raquel ; Martins da Silva, António ; Pinho Costa, Paulo ; Ballestar, Esteban

Date: 2022

Persistent ID: http://hdl.handle.net/10400.18/8548

Origin: Repositório Científico do Instituto Nacional de Saúde

Subject(s): Cell-free DNA; Biomarker; DNA Methylation; Epilepsy; Doenças Genéticas


Description

Background: DNA methylation profiling of circulating cell-free DNA (cfDNA) has rapidly become a promising strategy for biomarker identification and development. The cell-type-specific nature of DNA methylation patterns and the direct relationship between cfDNA and apoptosis can potentially be used non-invasively to predict local alterations. In addition, direct detection of altered DNA methylation patterns performs well as a biomarker. In a previous study, we demonstrated marked DNA methylation alterations in brain tissue from patients with mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS). Results: We performed DNA methylation profiling in cfDNA isolated from the serum of MTLE patients and healthy controls using BeadChip arrays followed by systematic bioinformatic analysis including deconvolution analysis and integration with DNase accessibility data sets. Differential cfDNA methylation analysis showed an overrepresentation of gene ontology terms and transcription factors related to central nervous system function and regulation. Deconvolution analysis of the DNA methylation data sets ruled out the possibility that the observed differences were due to changes in the proportional contribution of cortical neurons in cfDNA. Moreover, we found no overrepresentation of neuron- or glia-specific patterns in the described cfDNA methylation patterns. However, the MTLE-HS cfDNA methylation patterns featured a significant overrepresentation of the epileptic DNA methylation alterations previously observed in the hippocampus. Conclusions: Our results support the use of cfDNA methylation profiling as a rational approach to seeking non-invasive and reproducible epilepsy biomarkers.

Document Type Journal article
Language English
Contributor(s) Repositório Científico do Instituto Nacional de Saúde
CC Licence
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents