Document details

Limits to the adaptation of herbivorous spider mites to metal accumulation in homogeneous and heterogeneous environments

Author(s): Godinho, Diogo P. ; De mendonça fragata almeida, Inês ; Majer, Agnieszka ; Rodrigues, Leonor R ; Magalhães, Sara

Date: 2024

Persistent ID: http://hdl.handle.net/10400.5/98207

Origin: Repositório da Universidade de Lisboa


Description

Metal accumulation is used by some plants as a defence against herbivores. Yet, herbivores may adapt to these defences, becoming less susceptible. Moreover, ecosystems often contain plants that do and do not accumulate metals, but whether such heterogeneity affects herbivore adaptation remains understudied. Here, we performed experimental evolution to test whether the spider mite Tetranychus evansi adapts to plants with high cadmium concentrations, in homogeneous (plants with cadmium) or heterogeneous (plants with or without cadmium) environments. For that we used tomato plants, which accumulate cadmium, thus affecting the performance of these spider mites. We measured mite fecundity, hatching rate, and the number of adult offspring after 12 and 33 generations and habitat choice after 14 and 51 generations, detecting no trait change, which implies the absence of adaptation. We then tested whether this was due to a lack of genetic variation in the traits measured and, indeed, additive genetic variance was low. Interestingly, despite no signs of adaptation, we observed a decrease in fecundity and number of adult offspring produced on cadmium-free plants, in the populations evolving in environments with cadmium. Therefore, evolving in environments with cadmium reduces the growth rate of spider mite populations on non-accumulating plants. Possibly, other traits contributed to population persistence on plants with cadmium. This calls for more studies addressing herbivore adaptation to plant metal accumulation.

Document Type Journal article
Language English
Contributor(s) Repositório Científico de Acesso Aberto da ULisboa
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents

No related documents