Detalhes do Documento

Theoretical analysis of a discrete population balance model with sum kernel

Autor(es): Kaushik, Sonali ; Kumar, Rajesh ; Costa, Fernando Pestana da

Data: 2023

Identificador Persistente: http://hdl.handle.net/10400.2/16780

Origem: Repositório Aberto da Universidade Aberta

Assunto(s): Discrete population balance model; Safronov–Dubovski coagulation equation; Oort–Hulst–Safronov equation; Existence of solutions; Conservation of mass; differentiability


Descrição

The Oort–Hulst–Safronov equation is a relevant population balance model. Its discrete form, developed by Pavel Dubovski, is the main focus of our analysis. The existence and density conservation are established for nonnegative symmetric coagulation rates satisfying V_{i;j} \leq i + j , \forall i, j \in N. Differentiability of the solutions is investigated for kernels with V_{i;j} \leq i^\apha + j^\alpha˛ where 0 \leq \alpha \leq 1 with initial conditions with bounded (1+\alpha)-th moments. The article ends with a uniqueness result under an additional assumption on the coagulation kernel and the boundedness of the second moment.

Tipo de Documento Artigo científico
Idioma Inglês
Contribuidor(es) Repositório Aberto
Licença CC
facebook logo  linkedin logo  twitter logo 
mendeley logo

Documentos Relacionados

Não existem documentos relacionados.