Document details

Wander effect on pavement performance for application in connected and autonomous vehicles

Author(s): Pais, Jorge C. ; Pereira, Paulo A. A. ; Thives, Liseane

Date: 2023

Persistent ID: https://hdl.handle.net/1822/87104

Origin: RepositóriUM - Universidade do Minho

Project/scholarship: info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04029%2F2020/PT;

Subject(s): Road pavements; Connected and autonomous vehicles; Wander; Pavement performance


Description

Connected and Autonomous Vehicles (CAV) will change how road engineers design road pavements because they can position themselves within a traffic lane, keeping their position in the lane more precisely than human-driven vehicles. These vehicles will have lower lateral wandering, which can induce more damage to pavements, such as cracking and permanent deformation, than the conventional vehicles, with consequences for the infrastructures due to the increased cracking and reduced safety due to the rutting. Thus, it is essential to assess the wander effect on pavement performance to define policies for its implementation on CAV. This paper studies the impact of the lateral wander of the traffic on pavement performance, considering its fatigue and permanent deformation resistance. This impact can be used to define limits for the wander to minimize distresses on the pavement. The results of this study allow us to conclude that for a pavement with a 10 cm asphalt layer, the wander effect is more significant for fatigue life. A pavement life increase of 20% was observed for a wander of 0.2 m, while for 0.6 m, the fatigue life can increase up to 48%. For the permanent deformation, a pavement life increase of 2% for a wander of 0.2 m was observed, but for 0.6 m, the pavement life can be increased up to 34%.

This work was partly financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020, and under the Associate Laboratory Advanced Production and Intelligent Systems ARISE under reference LA/P/0112/2020.

Document Type Journal article
Language English
Contributor(s) Universidade do Minho
CC Licence
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents