Document details

Direct and inverse methods applied to the determination of mode I cohesive law of bovine cortical bone using the DCB test

Author(s): Pereira, F. A. M. ; de Moura, M. F. S. F. ; Dourado, N. ; Morais, J. J. L. ; Xavier, J. ; Dias, M. I. R.

Date: 2017

Persistent ID: https://hdl.handle.net/1822/52131

Origin: RepositóriUM - Universidade do Minho

Subject(s): Bovine cortical bone; Cohesive law; mode I; Double Cantilever Beam test


Description

This work addresses the determination of the cohesive law under mode I loading of bovine cortical bone tissue using the Double Cantilever Beam (DCB) test. Direct and inverse methods were proposed to assess the cohesive laws representative of bone fracture under mode I loading. The direct method combines the evolution of the strain energy release rate under mode I loading with the crack tip opening displacement that is monitored by digital image correlation technique. According to this method, the cohesive law is obtained by differentiation of such relation with respect to the crack opening. The inverse procedure is performed through a finite element analysis including cohesive zone modelling, conjointly with a devel- oped optimization algorithm. This identification strategy does not require a pre-established shape of the cohesive law as with the conventional inverse based procedures, which is viewed as a novelty of this work. It was concluded that both methods provide consistent results, being appellative tools concerning systematic and methodical studies dedicated to bone fracture characterization.

Document Type Journal article
Language English
Contributor(s) Universidade do Minho
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents