Document details

Multi-stage Deep Layer Aggregation for brain tumor segmentation

Author(s): Silva, Carlos A. ; Pinto, Adriano ; Pereira, Sérgio ; Lopes, Ana

Date: 2021

Persistent ID: https://hdl.handle.net/1822/89931

Origin: RepositóriUM - Universidade do Minho

Subject(s): Brain tumor segmentation; Deep Learning; Convolutional Neural Networks; Gaussian filters


Description

Gliomas are among the most aggressive and deadly brain tumors. This paper details the proposed Deep Neural Network architecture for brain tumor segmentation from Magnetic Resonance Images. The architecture consists of a cascade of three Deep Layer Aggregation neural networks, where each stage elaborates the response using the feature maps and the probabilities of the previous stage, and the MRI channels as inputs. The neuroimaging data are part of the publicly available Brain Tumor Segmentation (BraTS) 2020 challenge dataset, where we evaluated our proposal in the BraTS 2020 Validation and Test sets. In the Test set, the experimental results achieved a Dice score of 0.8858, 0.8297 and 0.7900, with an Hausdorff Distance of 5.32 mm, 22.32 mm and 20.44 mm for the whole tumor, core tumor and enhanced tumor, respectively.

Document Type Conference paper
Language English
Contributor(s) Universidade do Minho
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents

No related documents