Document details

Redox-Oligomeric State of Peroxiredoxin-2 and Glyceraldehyde-3-Phosphate Dehydrogenase in Obstructive Sleep Apnea Red Blood Cells under Positive Airway Pressure Therapy


Description

Funding: Project partially supported by Harvard Medical School-Portugal Program (HMSPICJ/0022/2011), ToxOmics—Centre for Toxicogenomics and Human Health (FCT-UID/BIM/00009/2013), Fundação para a Ciência e a Tecnologia (FCT)/Poly-Annual Funding Program and FEDER/Saúde XXI Program, Portugal, Antioxidants 2020, 9, 1184 26 of 29 RNEM- National Mass Spectrometry Networking—FCT Strategic Infrastructure and PhD fellowship, FCT-SFRH/BD/133511/2017., Portugal

In this study, we examined the effect of six months of positive airway pressure (PAP) therapy on Obstructive Sleep Apnea (OSA) red blood cell (RBC) proteome by two dimensional difference gel electrophoresis (2D-DIGE) - based proteomics followed by Western blotting (WB) validation. The discovered dysregulated proteins/proteoforms are associated with cell death, H2O2 catabolic/metabolic process, stress response, and protein oligomerization. Validation by nonreducing WB was performed for peroxiredoxin-2 (PRDX2) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by using antibodies against the sulfinylated/sulfonylated cysteine of these proteins to better evaluate their redox-oligomeric states under OSA and/or in response to PAP therapy. The results indicated that the redox-oligomeric state of GAPDH and PRDX2 involving overoxidation by sulfinic/sulfonic acids were differentially modulated in OSA RBC, which might be compromising RBC homeostasis. PAP therapy by restoring this modulation induced a higher oligomerization of overoxidized GAPDH and PRDX2 in some patients that could be associated with eryptosis and the chaperone "gain" of function, respectively. This varied response following PAP may result from the complex interplay between OSA and OSA metabolic comorbidity. Hence, information on the redox status of PRDX2 and GAPDH in RBC will help to better recognize OSA subtypes and predict the therapeutic response in these patients. GAPDH monomer combined with body mass index (BMI) and PRDX2 S-S dimer combined with homeostatic model assessment for insulin resistance (HOMA-IR) showed to be very promising biomarkers to predict OSA and OSA severity, respectively.

Document Type Journal article
Language English
Contributor(s) Centre for Toxicogenomics and Human Health (ToxOmics); NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM); RUN
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents

No related documents