Detalhes do Documento

TSFEL: Time Series Feature Extraction Library

Autor(es): Barandas, Marília ; Folgado, Duarte ; Fernandes, Letícia ; Santos, Sara ; Abreu, Mariana ; Bota, Patrícia ; Liu, Hui ; Schultz, Tanja ; Gamboa, Hugo

Data: 2020

Identificador Persistente: http://hdl.handle.net/10362/117283

Origem: Repositório Institucional da UNL

Assunto(s): Feature extraction; Machine learning; Python; Time series; Software; Computer Science Applications


Descrição

POCI-01-0247-FEDER-038436

Time series feature extraction is one of the preliminary steps of conventional machine learning pipelines. Quite often, this process ends being a time consuming and complex task as data scientists must consider a combination between a multitude of domain knowledge factors and coding implementation. We present in this paper a Python package entitled Time Series Feature Extraction Library (TSFEL), which computes over 60 different features extracted across temporal, statistical and spectral domains. User customisation is achieved using either an online interface or a conventional Python package for more flexibility and integration into real deployment scenarios. TSFEL is designed to support the process of fast exploratory data analysis and feature extraction on time series with computational cost evaluation.

Tipo de Documento Artigo científico
Idioma Inglês
Contribuidor(es) DF – Departamento de Física; LIBPhys-UNL; RUN
facebook logo  linkedin logo  twitter logo 
mendeley logo

Documentos Relacionados

Não existem documentos relacionados.