Detalhes do Documento

Projection to latent correlative structures, a dimension reduction strategy for spectral-based classification

Autor(es): Erny, Guillaume Laurent ; Brito, Elsa ; Pereira, Ana Bárbara ; Bento-Silva, Andreia ; Vaz Patto, Maria Carlota ; Bronze, Maria Rosario

Data: 2021

Identificador Persistente: http://hdl.handle.net/10362/135404

Origem: Repositório Institucional da UNL

Projeto/bolsa: info:eu-repo/grantAgreement/EC/FP7/613551/EU;

Assunto(s): Chemistry(all); Chemical Engineering(all)


Descrição

UIDB/ 00511/2020 POCI-01-0145-FEDER-029702 UID/04551/2020

Latent variables are used in chemometrics to reduce the dimension of the data. It is a crucial step with spectroscopic data where the number of explanatory variables can be very high. Principal component analysis (PCA) and partial least squares (PLS) are the most common. However, the resulting latent variables are mathematical constructs that do not always have a physicochemical interpretation. A new data reduction strategy, named projection to latent correlative structures (PLCS), is introduced in this manuscript. This approach requires a set of model spectra that will be used as references. Each latent variable is the relative similarity of a given spectrum to a pair of reference spectra. The latent structure is obtained using every possible combination of reference pairing. The approach has been validated using more than 500 FTIR-ATR spectra from cool-season culinary grain legumes assembled from germplasm banks and breeders' working collections. PLCS has been combined with soft discriminant analysis to detect outliers that could be particularly suitable for a deeper analysis.

Tipo de Documento Artigo científico
Idioma Inglês
Contribuidor(es) Instituto de Tecnologia Química e Biológica António Xavier (ITQB); Faculdade de Ciências e Tecnologia (FCT); RUN
facebook logo  linkedin logo  twitter logo 
mendeley logo

Documentos Relacionados