Detalhes do Documento

Optimizing document reranking in a retrieval-augmented generation pipeline for Portuguese legal research

Autor(es): Wollny, Carolyn Svea

Data: 2025

Identificador Persistente: http://hdl.handle.net/10362/186944

Origem: Repositório Institucional da UNL

Assunto(s): Retrieval-Augmented Generation; RAG; Large Language Models; LLM; Artificial Intelligence; AI; Hallucination; Question answering; RAG evaluation; Vector store; Chunking; Legal AI; Document reranking; Relevance ranking; Legal information retrieval; Portuguese legal retrieval; Domínio/Área Científica::Ciências Sociais::Economia e Gestão


Descrição

This study explores RAG systems tailored to the Portuguese legal domain, highlighting challenges in underrepresented languages. Fixed-size chunking strategies, particularly TokenTextSplitter, were found to be most effective, while more advanced techniques like Recursive and Semantic splitting showed little benefits. Larger chunk sizes improved retrieval accuracy and answer quality, though the impact of chunk overlap remains inconclusive. Although reranking techniques have been shown to improve retrieval in previous research this may only be true for large and diverse datasets.

Tipo de Documento Dissertação de mestrado
Idioma Inglês
Orientador(es) Han, Qiwei
Contribuidor(es) RUN
facebook logo  linkedin logo  twitter logo 
mendeley logo

Documentos Relacionados

Não existem documentos relacionados.