Document details

Bio-inspired coating strategies for the immobilization of polymyxins to generate contact-killing surfaces

Author(s): Alves, Diana Filipa Barros ; Pereira, Maria Olívia

Date: 2016

Persistent ID: http://hdl.handle.net/1822/42761

Origin: RepositóriUM - Universidade do Minho

Project/scholarship: info:eu-repo/grantAgreement/FCT/5876/147337/PT; info:eu-repo/grantAgreement/FCT/5876-PPCDTI/113196/PT ; info:eu-repo/grantAgreement/FCT/5876-PPCDTI/126270/PT ;

Subject(s): Antimicrobial peptides; Antimicrobial surfaces; Bacterial resistance; Cytotoxicity; Dopamine chemistry; Science & Technology


Description

Microbial colonization of indwelling devices remains a major concern in modern healthcare. Developing approaches to prevent biomaterial-associated infections (BAI) is, therefore, in great demand. This study aimed to immobilize two antimicrobial peptides (polymyxins B and E) onto polydimethylsiloxane (PDMS) using two polydopamine (pDA)-based approaches: the conventional two-step method involving the deposition of a pDA layer to which biomolecules are immobilized, and a one-step method where peptides are dissolved together with dopamine before its polymerization. Surface characterization confirms the immobilization of polymyxins onto PDMS at a non-toxic concentration. Immobilization of polymyxins using a one-step pDA-based approach is able to prevent Pseudomonas aeruginosa adhesion and kill a significant fraction of the adherent ones. Living cells adhered to these modified surfaces exhibit the same susceptibility pattern as cells adhered to unmodified surfaces, highlighting no resistance development. Results suggest that polymyxins immobilization holds a great potential as an additional antimicrobial functionality in the design of biomaterials.

The authors acknowledge the Portuguese Foundation for Science and Technology (FCT), the strategic funding of UID/BIO/04469/2013 unit. This study was also supported by FCT and the European Community fund FEDER, through Program COMPETE, under the scope of the Projects “PTDC/SAU-SAP/113196/2009 (FCOMP-01-0124-FEDER-016012),” “RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462),” and “BioHealth—Biotechnology and Bioengineering approaches to improve health quality,” Ref. NORTE-07-0124-FEDER-000027, co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. The authors also acknowledge FCT for the PhD Grant of Diana Alves (SFRH/BD/78063/2011).

Document Type Journal article
Language English
Contributor(s) Universidade do Minho
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents