Document details

Measurement of the transverse momentum and phi(eta)*. distributions of Drell-Yan lepton pairs in proton-proton collisions at root s=8 TeV with the ATLAS detector

Author(s): Onofre, A. ; Castro, Nuno Filipe Silva Fernandes ; ATLAS Collaboration

Date: 2016

Persistent ID: http://hdl.handle.net/1822/43772

Origin: RepositóriUM - Universidade do Minho

Project/scholarship: info:eu-repo/grantAgreement/FCT/3599-PPCDT/143069/PT ;

Subject(s): Ciências Naturais::Ciências Físicas; Science & Technology


Description

Distributions of transverse momentum pℓℓT and the related angular variable ϕ∗η of DrellΓÇôYan lepton pairs are measured in 20.3┬áfb−1 of protonΓÇôproton collisions at √s=8┬áTeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in protonΓÇôproton collisions at √s=7┬áTeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of ϕ∗η<1 the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of ϕ∗η this is not the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of pℓℓT while the fixed-order prediction of Dynnlo falls below the data at high values of pℓℓT. ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the ϕ∗η and pℓℓT distributions as a function of lepton-pair mass and rapidity than the basic shape of the data.

- We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario InnovationTrust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the T

Document Type Journal article
Language English
Contributor(s) Universidade do Minho
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents