Document details

Quality evaluation of wing sections obtained with different manufacturing techniques

Author(s): Gomes, João Nuno Morgado do Foro Santos

Date: 2016

Persistent ID: http://hdl.handle.net/10400.6/5100

Origin: uBibliorum

Subject(s): Correções Pós-Perda; Equilíbrio 3d do Escoamento; Jblade Software; Projeto Inverso de Hélices; Simulação de Hélices Em Dinâmica de Fluidos Computacional; Teoria do Elemento de Pá; Testes de Hélices Em Túnel de Vento.; Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias


Description

This thesis presents the development of a new propeller design and analysis software capable of adequately predicting the low Reynolds number performance. JBLADE software was developed from QBLADE and XFLR5 and it uses an improved version of Blade Element Momentum (BEM) theory that embeds a new model for the three-dimensional flow equilibrium. The software allows the introduction of the blade geometry as an arbitrary number of sections characterized by their radial position, chord, twist, length, airfoil and associated complete 360º angle of attack range airfoil polar. The code provides a 3D graphical view of the blade, helping the user to detect inconsistencies. JBLADE also allows a direct visualization of simulation results through a graphical user interface making the software accessible and easy to understand. In addition, the coupling between different JBLADE modules avoids time consuming operations of importing/exporting data, decreasing possible mistakes created by the user. The software is developed as an open-source tool for the simulation of propellers and it has the capability of estimating the performance of a given propeller geometry in design and off-design operating conditions. The current development work was focused in the design of airship propellers. The software was validated against different propeller types proving that it can be used to design and optimize propellers for distinct applications. The derivation and validation of the new 3D flow equilibrium formulation are presented. This 3D flow equilibrium model accounts for the possible radial movement of the flow across the propeller disk, improving the performance prediction of the software. The development of a new method for the prediction of the airfoil drag coefficient at a 90 degrees angle of attack for a better post-stall modelling is also presented. Different post-stall methods available in the literature, originally developed for wind turbine industry, were extended for propeller analysis and implemented in JBLADE. The preliminary analysis of the results shows that the propeller performance prediction can be improved using these implemented post-stall methods. An inverse design methodology, based on minimum induced losses was implemented in JBLADE software in order to obtain optimized geometries for a given operating point. In addition a structural sub-module was also integrated in the software allowing the estimation of blade weight as well as tip displacement and twist angle changes due to the thrust generation and airfoil pitching moments. To validate the performance estimation of JBLADE software, the propellers from NACA Technical Report 530 and NACA Technical Report 594 were simulated and the results were checked against the experimental data and against those of other available codes. The inverse design and structural sub-module were also validated against other numerical results. To verify the reliability of XFOIL, the XFOIL Code, the Shear Stress Transport k-? turbulence model and a refurbished version of k-kl-? transition model were used to estimate the airfoil aerodynamic performance. It has been shown that the XFOIL code gives the closest prediction when compared with experimental data, providing that it is suitable to be used in JBLADE Software as airfoil’s performance estimation tool. Two different propellers to use on the MAAT high altitude cruiser airship were designed and analysed. In addition, the design procedure and the optimization steps of the new propellers to use at such high altitudes are also presented. The propellers designed with JBLADE are then analysed and the results are compared with conventional CFD results since there is no experimental data for these particular geometries. Two different approaches were used to obtain the final geometries of the propellers, since, instead of using the traditional lift coefficient prescription along the blade, the airfoil’s best L3/2/D and best L/D were used to produce different geometries. It was shown that this new first design approach allows the minimization of the chord along the blade, while the thrust and propulsive efficiency are maximized. A new test rig was developed and used to adequately develop and validate numerical design tools for the low Reynolds numbers propellers. The development of an experimental setup for wind tunnel propeller testing is described and the measurements with the new test rig were validated against reference data. Additionally, performance data for propellers that are not characterized in the existing literature were obtained. An APC 10”x7” SF replica propeller was built and tested, providing complementary data for JBLADE validation. The CAD design process as well as moulds and propeller manufacture are also described. The results show good agreement between JBLADE and experimental performance measurements. Thus it was concluded that JBLADE can be used to design and calculate the performance of the MAAT project high altitude cruiser airship propellers.

Nesta tese é apresentado o desenvolvimento de um novo código para projeto e análise de hélices, capaz de prever adequadamente o desempenho a baixos números de Reynolds. O JBLADE foi desenvolvido partindo dos códigos QBLADE e XFLR5 e utiliza uma versão aperfeiçoada da teria do elemento da pá que contém um novo modelo que considera o equilíbrio tridimensional do escoamento. O código permite que a pá seja introduza como um número arbitrário de secções, caracterizadas pela sua posição radial, corda, ângulo de incidência, comprimento, perfil e ainda pela polar 360º associada ao perfil. O código permite uma visualização gráfica em 3D da pá, ajudando o utilizador a detetar possíveis inconsistências. O JBLADE também permite uma visualização direta dos resultados das simulações através de um interface gráfico, tornado o código acessível e de fácil compreensão. Além disso, a interligação entre os diferentes módulos do JBLADE evita operações demoradas de importação e exportação de dados, diminuindo assim possíveis erros criados pelo utilizador. O código foi desenvolvido como um código aberto, para a simulação de hélices, e que tem a capacidade de estimar o desempenho de uma determinada geometria de hélice nas condições de operação do seu ponto de projeto e fora do seu ponto de projeto. O trabalho de desenvolvimento aqui apresentado foi focado no projeto de hélices para dirigíveis de grande altitude no âmbito do projeto MAAT (Multibody Advanced Airship for Transportation). O software foi validado para diferentes tipos de hélice, provando que pode ser utilizado para projetar e otimizar hélices para diferentes finalidades. São apresentadas a derivação e validação do novo modelo de equilíbrio tridimensional do escoamento. Este modelo de equilíbrio 3D tem em conta o possível movimento radial do escoamento ao longo do disco da hélice, melhorando as estimativas de desempenho do software. O desenvolvimento de um novo método para a estimativa do coeficiente de arrasto dos perfis a 90º, permitindo uma melhor modelação do desempenho pós-perda é também apresentado. Diferentes modelos de pós perda presentes na literatura e originalmente desenvolvidos para a indústria das turbinas eólicas foram implementados no JBLADE e a sua aplicação a hélices para melhorar a estimativa do desempenho foi analisada. Os resultados preliminares mostraram que a estimativa de desempenho das hélices pode ser melhorada, utilizando estes modelos de pós-perda. Uma metodologia de projeto inverso, baseada no mínimo das perdas induzidas foi implementado no JBLADE, de modo a ser possível obter hélices com geometrias otimizadas para um dado ponto de projeto. Além disto, um módulo de cálculo estrutural foi também implementado, permitindo estimar o peso das pás, a deformação das mesmas, quer em termos de flexão, quer em termos de torção, devido à tração gerada pela própria hélice e aos momentos do perfil. Para validar as estimativas de desempenho do JBLADE foram utilizadas hélices originalmente apresentadas nos relatórios técnicos NACA, nomeadamente no relatório técnico 594 e 530. Estas hélices foram simuladas no JBLADE e os resultados foram comparados com os dados experimentais e com as estimativas de desempenho obtidas através de outros códigos numéricos. O módulo de projeto inverso e o módulo estrutural foram também validados, através da comparação com outros resultados numéricos. De modo a verificar a fiabilidade do código XFOIL usado no JBLADE para previsão das características dos perfis das pás, o modelo de turbulência k-? Shear Stress Transport e uma versão reformulada do modelo de transição k-kl-? foram utilizados em simulações RANS para comparação dos resultados do desempenho aerodinâmico de perfis. Os resultados mostraram que o código XFOIL dá uma estimativa de desempenho mais próxima dos dados obtidos experimentalmente do que os modelos RANS CFD, provando que pode ser utilizado no JBLADE como ferramenta de estimava de desempenho aerodinâmico dos perfis. Em vez da tradicional prescrição do coeficiente de sustentação ao longo da pá para melhor L/D, foi utilizado os pontos de melhor L3/2/D para o projeto de uma hélice para o dirigível cruzador do projeto MAAT. Os procedimentos de otimização empregados ao longo do processo de projeto destas hélices para utilização em grandes altitudes são também descritos. As hélices projetadas com o JBLADE foram analisadas e os resultados obtidos foram comparados com simulações convencionais de dinâmica de fluidos computacional, uma vez que não existem dados experimentais para estas geometrias em particular. Foram utilizadas duas aproximações diferentes de modo a obter duas geometrias finais. Foi mostrado que esta nova abordagem de projeto de hélices leva à minimização da corda necessária ao longo da pá, enquanto a tração e a eficiência da hélice são maximizadas. Foi desenvolvida uma nova instalação experimental para ensaio e caracterização de hélices de baixo número de Reynolds no âmbito do projeto MAAT, que foi posteriormente utilizada para desenvolver e validar ferramentas numéricas para projeto destas hélices. Além da descrição do desenvolvimento da instalação experimental, é também apresentada a validação da mesma, através da comparação das medições de diferentes hélices com dados experimentais presentes na literatura, obtidos em diferentes instalações de referência. Foi construída e testada uma réplica da hélice APC 10”x7” SF, fornecendo dados adicionais para a validação do JBLADE. É ainda apresentado o processo de desenho da réplica no software CAD e de construção dos moldes e do protótipo da hélice. Os resultados mostraram uma boa concordância entre as estimativas do JBLADE e as medições experimentais. Assim, conclui-se que o JBLADE pode ser utilizado para projetar e estimar o desempenho das hélices que poderão ser utilizadas pelo dirigível cruzador do MAAT bem como em outras aplicações.

Document Type Master thesis
Language English
Advisor(s) Gamboa, Pedro Vieira; Marques, José Carlos Páscoa
Contributor(s) uBibliorum
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents

No related documents