Document details

Production and Purification of DNA G-quadruplex using pPH600 plasmid

Author(s): Santos, Tiago André Afonso dos

Date: 2015

Persistent ID: http://hdl.handle.net/10400.6/6071

Origin: uBibliorum

Subject(s): Cromatografia de Afinidade; e Coli; G-Quadruplex; L-Arginina; L-Tirosina; L-Triptofano; Sc Pph600; Domínio/Área Científica::Engenharia e Tecnologia:: Outras Engenharias e Tecnologias


Description

When we think in structure of DNA, the image that comes immediately to mind is the iconic structure in double helix discovered by Watson and Crick in 1953. However, in addition to this structure DNA can assume other secondary structures which are relevant in the biological context. Some important regions of human genome have unusual potential to form this structures upon transcription. The plasmid pPH600 have a sequence of S?3 immunoglobulin switch region of murine that are able to form G-quadruplex upon transcription. The G-loops predominance is more evidenced on supercoiled (sc) topology than on relaxed (oc) or linearized (ln) plasmid. The present work describe the biosynthesis of plasmid pPH600 in E. coli DH5a and the strategies for sc pPH600 purification, directly from native sample (oc + sc) and clarified E. coli lysate. The purification strategies are based on amino acid affinity chromatography taking advantage of biological recognition to pDNA. For this propose two supports were prepared, L-tryptophan Sepharose and L-tyrosine Sepharose, by covalent immobilisation using 1,4-butanediol diglycidyl ether spacer arm. The commercial support L-arginine Sepharose 4B was also used in the strategy for purifying sc pPH600 since it has already been efficiently applied to separate sc isoforms of different plasmids using mild binding and elution conditions. Therefore, an initial screening with pPH600 native sample (oc + sc) was performed to evaluate the behavior of three supports. The better support in isoform separation was selected to purify sc pPH600 directly from clarified lysate. L-tyrosine support shows the prominent result in separation of two isoforms, allowing the recovery of sc pPH600, through a decreasing stepwise gradient from 2.25 to 0 M (NH4)2SO4 in 100 mM HEPES acid (pH 7.4) with temperature at 10ºC. Thereafter, the clarified E. coli lysate sample was injected directly onto L-tyrosine support to separate sc pPH600 from internal impurities of E. coli (gDNA, RNA, proteins, endotoxins and other conformations of pPH600). The total separation of sc pPH600 was totally achieved using a stepwise gradient from 2.25, 1.95 and 0 M (NH4)2SO4 in 100 mM HEPES acid (pH 7.4) with temperature at 10ºC. The underlying mechanism is thought to involve not only hydrophobic but also other non-covalent interactions such as, hydrogen bonds, p-p stacking and van der Waals interactions. Plasmid assessment tests indicated that the sc pPH600 resultant from the purification step presented a purity degree of 98.2%, with an extremely reduced level of impurities. Finally, the sc pPH600 resultant from purification was transcribed to induce the formation of G-quadruplex and it is confirmed by circular dichroism.

Quando pensamos na estrutura do DNA a imagem que vem imediatamente à nossa mente é a da icónica estrutura em dupla hélice que Watson e Crick descobriram em 1953. No entanto, para além desta estrutura em dupla hélice, o DNA tem capacidade para assumir outras conformações secundárias, não menos relevantes do ponto de vista biológico. Algumas importantes regiões do genoma humano têm um potencial incomum para formar estas estruturas durante o processo de transcrição. O plasmídeo pPH600 tem uma sequência de 604 pb da região de troca S?3 da imunoglobulina do ratinho que tem capacidade para formar G-quadruplex durante a transcrição. A predominância de G-loops é maior na topologia superenrolada (sc) do que nas topologias circular aberta (oc) ou linear (ln). O presente trabalho descreve a biosíntese do plasmídeo pPH600 em E. coli DH5a e as estratégias para purificação da isoforma sc do pPH600, diretamente a partir de uma amostra nativa (oc + sc) ou a partir do lisado de E. coli clarificado. As estratégias de purificação são baseadas na cromatografia de afinidade com aminoácidos, aproveitando o reconhecimento biológico com o plasmídeo. Para este propósito dois suportes foram preparados, L-triptofano e L-tirosina, através de imobilização covalente dos aminoácidos à Sepharose CL-6B através do braço espaçador 1,4-butanediol diglicidil éter. O suporte comercial L-arginina-Sepharose 4B foi também utilizado devido à eficiência na purificação da isoforma sc com diferentes plasmídeos utilizando baixas concentrações de sal para ligação e eluição da isoforma sc. Deste modo, foi realizado um screening inicial com a amostra nativa (oc + sc) de pPH600 para avaliar comportamento dos três suportes. O suporte que promove a separação das isoformas do pPH600 foi selecionado para purificação da isoforma sc com o lisado de E. coli clarificado. O suporte de L-tirosina foi o que demonstrou resultados proeminentes na separação das duas isoformas, permitindo a recuperação total da isoforma sc de pPH600, através de um gradiente por passos decrescente de 2,25 M para 0 M de (NH4)2SO4 em HEPES 100 mM (pH 7,4) à temperatura de 10ºC. Subsequentemente, o lisado de E. coli clarificado foi injetado diretamente no suporte de L-tirosina para separar a isoform sc de pPH600 das impurezas internas do hospedeiro (gDNA, RNA, proteínas, endotoxinas e outras conformações de pPH600). A separação foi alcançada com um gradiente por passos decrescente de 2,25 para 1,95 M e posteriormente para 0 M (NH4)2SO4 em HEPES 100 mM (pH 7,4) à temperatura de 10ºC. O mecanismo de reconhecimento molecular que permite a separação envolve não só as interações hidrofóbicas mas também outras interações não covalentes como, pontes de hidrogénio, empilhamento p-p e van der Waals. Os testes de avaliação do plasmídeo indicam que a isoforma sc de pPH600 resultante do passo de purificação tem um grau de pureza de 98,2%, com um reduzido nível de impurezas. Finalmente, a isoforma sc resultante da purificação foi transcrito e analisado por dicroísmo circular para comprovar a formação do G-loop.

Document Type Master thesis
Language English
Advisor(s) Cruz, Carla Patrícia Alves Freire Madeira; Queiroz, João António de Sampaio Rodrigues
Contributor(s) uBibliorum
facebook logo  linkedin logo  twitter logo 
mendeley logo