Document details

Development of different drug delivery systems for skin regeneration

Author(s): Morgado, Patrícia Isabel da Cruz

Date: 2011

Persistent ID: http://hdl.handle.net/10400.6/982

Origin: uBibliorum

Subject(s): Cicatrização de feridas; Cicatrização de feridas - Biomateriais; Regeneração da pele; Cicatrização da pele - Estudos in vitro; Cicatrização da pele - Estudos in vivo


Description

The human body has different fluids that are hostile environments for biologically active molecules. To overcome this arbitrary, several drug delivery systems have been developed. These systems not only protect all unstable biological active compounds from enzymatic degradation in the human body but also allow a sustained and targeted release of drugs. They contribute for decreasing drug dose required to achieve the desired therapeutic effect. Hydrogels, with their important characteristics, have been widely used in the development of these systems however, the quantity of drug loaded into them may be limited and the high water content of these polymeric matrices often results in relatively rapid drug release profiles. Nevertheless, due to their good physical and biological properties, hydrogels have been extensively used in the treatment of skin injuries. In order to take advantage of hydrogels for drug delivery and wound healing, different systems (nano and micrometric) have been developed and incorporated into hydrogels matrices. Nano and micro systems exhibit high encapsulation efficiencies of drugs and allow its release for a long period of time. Thus, the main goals of this master thesis work plan were to develop micrometric systems based on chitosan, alginate and a dextran hydrogel, and characterize their applicability in the treatment of skin injuries. Initially, the carriers were characterized according to their size, geometry, swelling behavior and biocompatibility. In vitro release studies allow us to analyze the release profile of a model protein (bovine serum albumin) when encapsulated into the microparticles. The same studies were done for microparticles loaded into a dextran hydrogel. Co-relating the swelling studies with the in vitro protein release studies a mathematical model based on the theory of hindered transport of large solutes in hydrogels was developed for theoretically describing the process of protein release. All the experimental results were interpreted with the aid of the developed model. Moreover it can contribute to decrease the number of experimental studies, reducing costs and saving time for the carrier development. After that, growth factors (vascular endothelial growth factor and endothelial growth factor) were encapsulated into chitosan microparticles that were then loaded into the dextran hydrogel. Subsequently in vivo studies were performed to characterize the applicability of the dextran hydrogel loaded with chitosan microparticles containing growth factors in wound healing. The in vitro and in vivo studies demonstrated that the developed carriers are biocompatible, accelerate the wound healing process and can be used to deliver other bioactive agents.

O corpo humano é composto por diferentes fluidos biológicos que são ambientes hostis para diversas moléculas bioactivas. Devido a este ambiente hostil, diversos sistemas de entrega controlada de fármacos têm sido desenvolvidos. Estes, não só protegem os compostos instáveis da degradação enzimática no corpo humano como, também, permitem a libertação desses compostos de uma forma controlada e, muitas vezes, direccionada, diminuindo, assim, a dosagem necessária para se obter o efeito terapêutico desejado. Até ao momento, os hidrogéis têm sido os materiais mais utilizados na produção deste tipo de sistemas. No entanto, a sua baixa eficiência de encapsulação e a elevada capacidade de absorverem água conduz a perfis de libertação do fármaco rápidos. Contudo, estes sistemas têm sido muito utilizados para o tratamento de feridas cutâneas devido às suas propriedades físicas e biológicas. Diferentes estudos têm sido efectuados, de forma a potenciar a utilização dos hidrogéis na libertação de fármacos e na regeneração de feridas. Novos sistemas (nano e micrométricos) têm sido produzidos e introduzidos no interior dos hidogéis. Estes apresentam eficiências de encapsulação de fármacos superiores e permitem que os mesmos sejam libertados durante um maior período de tempo. Assim, o plano de trabalhos deste mestrado teve como objectivos o desenvolvimento de sistemas micrométricos à base de quitosano e alginato e de um hidrogel de dextrano com o intuito de verificar a sua aplicabilidade no tratamento de feridas cutâneas. Deste modo, inicialmente os transportadores foram caracterizados quanto ao seu tamanho, geometria, capacidade de inchaço e biocompatibilidade. Estudos de libertação in vitro permitiram analisar o perfil de libertação de uma proteína modelo (albumina de soro bovino) quando encapsulada no interior das micropartículas. Os mesmos estudos foram efectuados para as micropartículas incorporadas no interior do hidrogel. Tendo por base os estudos de inchaço e os estudos de libertação in vitro, foi desenvolvido um modelo matemático baseado na teoria de transporte difuso de macromoléculas para descrever teoricamente o processo de libertação da molécula modelo usada no presente estudo. Todos os resultados experimentais foram interpretados com a ajuda do modelo desenvolvido, o qual pode reduzir o número de estudos experimentais necessários para desenvolver um determinado transportador, reduzindo os custos e o tempo necessário para o desenvolvimento destes novos sistemas para entrega direccionada e controlada de fármacos. Posteriormente, foram efectuados estudos in vivo, onde factores de crescimento (factor de crescimento vascular endotelial e factor de crescimento endotelial) foram encapsulados em micropartículas de quitosano. Através destes estudos verificou-se a aplicabilidade do hidrogel de dextrano e das micropartículas de quitosano com factores de crescimento encapsulados na regeneração de feridas cutâneas. Os estudos in vitro e in vivo demonstraram que os transportadores desenvolvidos são biocompatíveis, aceleram o processo de regeneração de feridas cutâneas e podem futuramente ser usados para libertar outros agentes bioactivos.

Document Type Master thesis
Language English
Advisor(s) Correia, Ilídio Joaquim Sobreira
Contributor(s) uBibliorum
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents

No related documents