Detalhes do Documento

Design and simulation of a smart bottle with fill-level sensing based on oxide TFT technology

Autor(es): Santos, Ângelo Emanuel Neves dos

Data: 2016

Identificador Persistente: http://hdl.handle.net/10362/19593

Origem: Repositório Institucional da UNL

Assunto(s): Packaging is an important element responsible for brand growth and one of the main rea-sons for producers to gain competitive advantages through technological innovation. In this re-gard, the aim of this work is to design a fully autonomous electronic system for a smart bottle packaging, being integrated in a European project named ROLL-OUT. The desired application for the smart bottle is to act as a fill-level sensor system in order to determine the liquid content level that exists inside an opaque bottle, so the consumer can exactly know the remaining quantity of the product inside. An in-house amorphous indium–gallium–zinc oxide thin-film transistor (a-IGZO TFT) model, previously developed, was used for circuit designing purposes. This model was based in an artificial neural network (ANN) equivalent circuit approach. Taking into account that only n-type oxide TFTs were used, plenty of electronic building-blocks have been designed: clock generator, non-overlapping phase generator, a capacitance-to-voltage converter and a comparator. As it was demonstrated by electrical simulations, it has been achieved good functionality for each block, having a final system with a power dissipation of 2.3 mW (VDD=10 V) not considering the clock generator. Four printed circuit boards (PCBs) have been also designed in order to help in the testing phase. Mask layouts were already designed and are currently in fabrication, foreseeing a suc-cessful circuit fabrication, and a major step towards the design and integration of complex trans-ducer systems using oxide TFTs technology; Capacitance-to-voltage converter; Comparator; Oxide TFTs circuit integration; Domínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiais


Descrição

Packaging is an important element responsible for brand growth and one of the main rea-sons for producers to gain competitive advantages through technological innovation. In this re-gard, the aim of this work is to design a fully autonomous electronic system for a smart bottle packaging, being integrated in a European project named ROLL-OUT. The desired application for the smart bottle is to act as a fill-level sensor system in order to determine the liquid content level that exists inside an opaque bottle, so the consumer can exactly know the remaining quantity of the product inside. An in-house amorphous indium–gallium–zinc oxide thin-film transistor (a-IGZO TFT) model, previously developed, was used for circuit designing purposes. This model was based in an artificial neural network (ANN) equivalent circuit approach. Taking into account that only n-type oxide TFTs were used, plenty of electronic building-blocks have been designed: clock generator, non-overlapping phase generator, a capacitance-to-voltage converter and a comparator. As it was demonstrated by electrical simulations, it has been achieved good functionality for each block, having a final system with a power dissipation of 2.3 mW (VDD=10 V) not considering the clock generator. Four printed circuit boards (PCBs) have been also designed in order to help in the testing phase. Mask layouts were already designed and are currently in fabrication, foreseeing a suc-cessful circuit fabrication, and a major step towards the design and integration of complex trans-ducer systems using oxide TFTs technology.

Tipo de Documento Dissertação de mestrado
Idioma Inglês
Orientador(es) Barquinha, Pedro; Goes, João
Contribuidor(es) RUN
facebook logo  linkedin logo  twitter logo 
mendeley logo

Documentos Relacionados

Não existem documentos relacionados.