A precise characterization of the incoming proton bunch parameters is required to accurately simulate the self-modulation process in the Advanced Wakefield Experiment (AWAKE). This paper presents an analysis of the parameters of the incoming proton bunches used in the later stages of the AWAKE Run 1 data-taking period. The transverse structure of the bunch is observed at multiple positions along the beamline us...
Plasma wakefield dynamics over timescales up to 800 ps, approximately 100 plasma periods, are studied experimentally at the Advanced Wakefield Experiment (AWAKE). The development of the longitudinal wakefield amplitude driven by a self-modulated proton bunch is measured using the external injection of witness electrons that sample the fields. In simulation, resonant excitation of the wakefield causes plasma ele...
We present numerical simulations and experimental results of the self-modulation of a long proton bunch in a plasma with linear density gradients along the beam path. Simulation results agree with the experimental results reported [F. Braunmller, T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. 125, 264801 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.264801]: with negative gradients, the charge of the...
We study experimentally the effect of linear plasma density gradients on the self-modulation of a 400 GeV proton bunch. Results show that a positive or negative gradient increases or decreases the number of microbunches and the relative charge per microbunch observed after 10 m of plasma. The measured modulation frequency also increases or decreases. With the largest positive gradient we observe two frequencies...
In 2017, AWAKE demonstrated the seeded self-modulation (SSM) of a 400 GeV proton beam from the Super Proton Synchrotron at CERN. The angular distribution of the protons deflected due to SSM is a quantitative measure of the process, which agrees with simulations by the two-dimensional (axisymmetric) particle-in-cell code LCODE to about 5%. The agreement is achieved in beam population scans at two selected plasma...
We study experimentally the longitudinal and transverse wakefields driven by a highly relativistic proton bunch during self-modulation in plasma. We show that the wakefields’ growth and amplitude increase with increasing seed amplitude as well as with the proton bunch charge in the plasma. We study transverse wakefields using the maximum radius of the proton bunch distribution measured on a screen downstream fr...