The repertoire of hydrolytic enzymes natively secreted by the filamentous fungus Ashbya (Eremothecium) gossypii has been poorly explored. Here, an invertase secreted by this flavinogenic fungus was for the first time molecularly and functionally characterized. Invertase activity was detected in A. gossypii culture supernatants and cell-associated fractions. Extracellular invertase migrated in a native polyacryl...
Background: Ashbya gossypii is a filamentous Saccharomycete used for the industrial production of riboflavin that has been recently explored as a host system for recombinant protein production. To gain insight into the protein secretory pathway of this biotechnologically relevant fungus, we undertook genome-wide analyses to explore its secretome and its transcriptional responses to protein secretion stress. Res...
To improve the general secretion ability of the biotechnologically relevant fungus Ashbya gossypii, random mutagenesis with ethyl methane sulfonate (EMS) was performed. The selection and screening strategy followed revealed mutants with improved secretion of heterologous Trichoderma reesei endoglucanase I (EGI), native α-amylase and/or native β-glucosidase. One mutant, S436, presented 1.4- to 2-fold increases i...
The riboflavin producer Ashbya gossypii is a filamentous hemiascomycete, closely related to the yeast Saccharomyces cerevisiae, that has been used as a model organism to study fungal developmental biology. It has also been explored as a host for the expression of recombinant proteins. However, although N-glycosylation plays important roles in protein secretion, morphogenesis, and the development of multicellula...
Colony radial growth rates and specific growth rates of three related Ashbya gossypii strains ATCC10895, IMI31268, MUCL29450 and an unrelated strain, CBS109.26, were measured on various carbon and nitrogen sources at pH 4.5 and pH 6.5 to elucidate physiological growth requirements and strain differences. All strains grew on yeast extract or ammonium as nitrogen sources, but not on nitrate. Substantial growth at...
The filamentous fungus Ashbya gossypii shows the potential for the production of, yet unexploited, valuable compounds other than riboflavin. To explore the ability of A. gossypii as a host for the expression of recombinant proteins, endoglucanase I (EGI) and cellobiohydrolase I (CBHI) from the fungus Trichoderma reesei were expressed in A. gossypii under Saccharomyces cerevisiae PGK1 promoter. The proteins were...
Este resumo faz parte de: Book of abstracts of the Meeting of the Institute for Biotechnology and Bioengineering, 2, Braga, Portugal, 2010. A versão completa do livro de atas está disponível em: http://hdl.handle.net/1822/10968