Over the last two decades, the possibility of using RPCs in outdoors systems has increased considerably. Our group has participated in this effort by installing several systems and continues to work on their optimization, while simultaneously studying and developing new approaches that can use RPCs in outdoor applications. In particular, four detectors were deployed in the field at the Pierre Auger Observatory ...
Over the last two decades, the possibility of using RPCs in outdoors systems has increased considerably. Our group has participated in this effort having installed several systems and continues to work on their optimization, while simultaneously studying and developing new approaches that can to use of RPCs in outdoor applications. In particular, some detectors were deployed in the field at the Pierre Auger Obs...
The LouMu team joins together specialists in particle detectors and in cosmic ray analyses, geophysicists and science communicators to muograph an underground gallery of an old mine, now open to visitors of a science museum. The muon telescope is made of Resistive Plate Chambers (RPCs) developed to operate stably and with low consumption at remote locations, and it has been tested in the Coimbra University, bef...
The use of muons for geophysical surveys has been proved successful in numerous projects around the planet. The use of muography in an underground environment has an easy side, when compared to the surface, due to the absence of the background radiation. On the other hand, the muon flux is much lower than what is measured on the surface. Geological and underground conditions should be considered when defining t...
SNO+ is a multipurpose neutrino experiment located approximately 2 km underground in SNOLAB, Sudbury, Canada. The detector started taking physics data in May 2017 and is currently completing its first phase, as a pure water Cherenkov detector. The low trigger threshold of the SNO+ detector allows for a substantial neutron detection efficiency, as observed with a deployed ^{241}Am^{9}Be source. Using a statistic...
A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower ...
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, th...
AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory designed to extend its energy range of detection and to directly measure the muon content of the cosmic ray primary particle showers. The array will be formed by an infill of surface water-Cherenkov detectors associated with buried scintillation counters employed for muon counting. Each counter is composed of three...
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceler...