Energy storage devices with liquid-metal electrodes have attracted interest in recent years due to their potential for mechanical resilience, self-healing, dendrite-free operation, and fast reaction kinetics. Gallium alloys like Eutectic Gallium Indium (EGaIn) are appealing due to their low melting point and high theoretical specific capacity. However, EGaIn electrodes are unstable in highly alkaline electrolyt...
Because of their high electrical conductivity, fluidic deformability, self-healing properties, and the possibility of recycling, Ga-based liquid metal alloys like eutectic gallium indium (EGaIn) have tremendous potential as electrodes for stretchable energy storage devices. However, EGaIn droplets could never be used as electrodes in thin-film supercapacitors (SCs) at the desired micro/nano scale, because they ...
This study presents a novel three-dimensional (3D) printable gallium-carbon black-styrene isoprene styrene block copolymer (Ga-CB-SIS), offering a versatile solution for the rapid fabrication of stretchable and integrated sensor-heater-battery systems in wearable and recyclable electronics. The composite exhibits sinter-free characteristics, allowing for printing on various substrates, including heat-sensitive ...
The last decade observed rapid progress in soft electronics. Yet, the ultimate desired goal for many research fields is to fabricate fully integrated soft-matter electronics with sensors, interconnects, and batteries, at the ease of pushing a print button. In this work, an important step is taken toward this by demonstrating an ultra-stretchable thin-film Silver-Gallium (Ag-Ga) battery with an unprecedented com...
Liquid metal (LM)-based composites hold promise for soft electronics due to their high conductivity and fluidic nature. However, the presence of α-Ga2O3 and GaOOH layers around LM droplets impairs conductivity and performance. We tackle this issue by replacing the oxide layer with conductive silver (Ag) using an ultrasonic-assisted galvanic replacement reaction. The Ag-coated nanoparticles form aggregated, poro...
The increasing interest in disposable electronics such as wearable patches, e-textiles, and smart packaging, warns emergence of another man-made disaster. A paradigm shift toward a more sustainable future through the development of soft material architectures that are robust and durable, but also degradable by external stimuli is proposed. Hydrogels, a class of soft polymers with exceptional properties, and hig...
Development of soft and compliant actuators has attracted tremendous attention due to their use in soft robotics, wearables, haptics, and assistive devices. Despite decades of progress, the goal of entirely digitally-printed actuators has yet to be fully demonstrated. Digital printing permits rapid customization of the actuator’s geometry, size, and deformation profile, and is a step toward mass customization o...
Soft and stretchable electronics have diverse applications in the fields of compliant bioelectronics, textile-integrated wearables, novel forms of mechanical sensors, electronics skins, and soft robotics. In recent years, multiple material architectures have been proposed for highly deformable circuits that can undergo large tensile strains without losing electronic functionality. Among them, gallium-based liqu...
Billions of disposable thin-film electronics will be produced annually in the near future, for applications in smart packaging, IoT, and wearable biomonitoring patches. For these cases, traditional rigid batteries are not optimal neither in terms of form and ergonomics nor ecological aspects. There is an urgent need for a new class of energy storage devices that are thin, stretchable, resilient, and recyclable....
The increasing interest in epidermal patches for wearable monitoring makes it urgent to move toward “greener” and recyclable materials in printed electronics. However, combining scalable fabrication, stretchable function, and recyclable material architecture is challenging to achieve. Herein, this article introduces a printable biphasic liquid metal (LM)-based composite that combines excellent electrical conduc...