Aim: As far as is known, the pharmaceutical effects of neem on human B-lymphoblastoid (TK6) cells have not been studied until now. Hence, the present study aimed to obtain neem phenolic extracts for inhibits the proliferation of TK6 cells and explore some possible underlying mechanisms involved in these effects. Methods: Hexane extract (HE) was obtained in the first step. After that, the residual hexane was rem...
Several studies have been conducted to address the potential adverse health risks attributed to exposure to nanoscale materials. While in vivo studies are fundamental for identifying the relation-ship between dose and occurrence of adverse effects, in vitro model systems provide important information regarding the mechanism(s) of action at the molecular level. With a special focus on exposure to inhaled (nano)p...
The hazard posed to human health by inhaled amorphous silica nanomaterials (aSiO2 NM) remains uncertain. Herein, we assessed the cyto- and genotoxicity of aSiO2 NM variants covering different sizes (7, 15, and 40 nm) and surface modifications (unmodified, phosphonate-, amino- and trimethylsilyl-modified) on rat alveolar epithelial (RLE-6TN) cells. Cytotoxicity was evaluated at 24 h after exposure to the aSiO2 N...
High-energy industrial processes have been associated with particle release into workplace air that can adversely affect workers’ health. The present study assessed the toxicity of incidental fine (PGFP) and nanoparticles (PGNP) emitted from atmospheric plasma (APS) and high-velocity oxy-fuel (HVOF) thermal spraying. Lactate dehydrogenase (LDH) release, 2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate...
Advanced ceramic technologies have a strong potential for airborne (nano)particle formation and emission, meaning that workers of those industries are at great risk of exposure to these particles. However, toxicological data of these (nano)particles is lacking, particularly for airborne particles released within sectors such as the ceramic industry. To address this relevant topic, the present work aimed to asse...
The advanced ceramic technology has been pointed out as a potentially relevant case of occupational exposure to nanoparticles (NP). Not only when nanoscale powders are being used for production, but also in the high-temperature processing of ceramic materials there is also a high potential for NP release into the workplace environment. In vitro toxicity of engineered NP (ENP) [antimony tin oxide (Sb2O3•SnO2; AT...
Diverse industries have already incorporated within their production processes engineered nanoparticles (ENP), increasing the potential risk of worker inhalation exposure. In vitro models have been widely used to investigate ENP toxicity. Air-liquid interface (ALI) cell cultures have been emerging as a valuable alternative to submerged cultures as they are more representative of the inhalation exposure to airbo...
Several reports on amorphous silica nanomaterial (aSiO2 NM) toxicity have been questioning their safety. Herein, we investigated the in vivo pulmonary toxicity of four variants of aSiO2 NM: SiO2_15_Unmod, SiO2_15_Amino, SiO2_7 and SiO2_40. We focused on alterations in lung DNA and protein integrity, and gene expression following single intratracheal instillation in rats. Additionally, a short-term inhalation st...
Titanium dioxide nanoparticles (TiO2 NPs) have a wide variety of applications in many consumer products, including as food additives, increasing the concern about the possible hazards that TiO2 NPs may pose to human health. Although most previous studies have focused on the respiratory system, ingestion must also be considered as an important exposure route. Furthermore, after inhalation or ingestion, TiO2 NPs ...
The main objective of the present work was to assess the cellular uptake and potential genotoxicity (micronuclei induction) of TiO2 NPs on four diverse human cell lines.