In the current age, users consume multimedia content in very heterogeneous scenarios in terms of network, hardware, and display capabilities. A naive solution to this problem is to encode multiple independent streams, each covering a different possible requirement for the clients, with an obvious negative impact in both storage and computational requirements. These drawbacks can be avoided by using codecs that ...
Event cameras have the ability to capture asynchronous per-pixel brightness changes, usually called "events", offering advantages over traditional frame-based cameras for computer vision tasks. Efficiently coding event data is critical for practical transmission and storage, given the very significant number of events captured. This paper proposes a novel double deep learning-based solution for efficient event ...
Efficient point cloud coding has become increasingly critical for multiple applications such as virtual reality, autonomous driving, and digital twin systems, where rich and interactive 3D data representations may functionally make the difference. Deep learning has emerged as a powerful tool in this domain, offering advanced techniques for compressing point clouds more efficiently than conventional coding metho...
In this golden age of multimedia, realistic content is in high demand with users seeking more immersive and interactive experiences. As a result, new image modalities for 3D representations have emerged in recent years, among which point clouds have deserved especial attention. Naturally, with this increase in demand, efficient storage and transmission became a must, with standardization groups such as MPEG and...
Point clouds are an emerging 3D visual representation model for immersive and interactive multimedia applications, inparticular for virtual and augmented reality. The huge amount of data associated to point clouds critically asks for efficient point cloud coding technology. While there are already some point cloud coding paradigms in the literature, notably octree, patch and graph-based for geometry data, very ...
This paper proposes a new reference picture selection method for light field image coding using the pseudovideo sequence (PVS) format. State-of-the-art solutions to encode light field images using the PVS format rely on video coding standards to exploit the inter-view redundancy between each sub-aperture image (SAI) that composes the light field. However, the PVS scanning order is not usually considered by the ...
Point clouds have recently become an important visual representation format, especially for virtual and augmented reality applications, thus making point cloud coding a very hot research topic. Deep learning-based coding methods have recently emerged in the field of image coding with increasing success. These coding solutions take advantage of the ability of convolutional neural networks to extract adaptive fea...
State-of-the-art light field (LF) image coding solutions, usually, rely in one of two LF data representation formats: Lenslet or 4D LF. While the Lenslet data representation is a more compact version of the LF, it requires additional camera metadata and processing steps prior to image rendering. On the contrary, 4D LF data, consisting of a stack of sub-aperture images, provides a more redundant representation r...
This paper proposes a new method for light field image coding relying on a high order prediction mode based on a training algorithm. The proposed approach is applied as an Intra prediction method based on a two-stage block-wise high order prediction model that supports geometric transformations up to eight degrees of freedom. Light field images comprise an array of micro-images that are related by complex persp...