The accurate measurement of joint angles during patient rehabilitation is crucial for informed decision making by physiotherapists. Presently, visual inspection stands as one of the prevalent methods for angle assessment. Although it could appear the most straightforward way to assess the angles, it presents a problem related to the high susceptibility to error in the angle estimation. In light of this, this st...
This paper introduces the Kabsch Marker Estimation Algorithm (KMEA), a new, robust multi-marker localization method designed for Autonomous Mobile Robots (AMRs) within Industry 4.0 (I4.0) settings. By integrating the Kabsch Algorithm, our approach significantly enhances localization robustness by aligning detected fiducial markers with their known positions. Unlike conventional methods that rely on a limited su...
This article presents the development of a low-cost 3D mapping technology for trajectory planning using a 2D LiDAR and a stepper motor. The research covers the design and implementation of a circuit board to connect and control all components, including the LiDAR and motor. In addition, a 3D printed support structure was developed to connect the LiDAR to the motor shaft. System data acquisition and processing a...
Accurate localization in autonomous robots enables effective decision-making within their operating environment. Various methods have been developed to address this challenge, encompassing traditional techniques, fiducial marker utilization, and machine learning approaches. This work proposes a deep-learning solution employing Convolutional Neural Networks (CNN) to tackle the localization problem, specifically ...
As robots have limited power sources. Energy optimization is essential to ensure an extension for their operating periods without needing to be recharged, thus maximizing their uptime and minimizing their running costs. This paper compares the energy consumption of different mobile robotic platforms, including differential, omnidirectional 3-wheel, omnidirectional 4-wheel, and Mecanum platforms. The comparison ...
Robotics competitions are highly strategic tools to engage and motivate students, cultivating their curiosity and enthusiasm for technology and robotics. These competitions encompass various disciplines, such as programming, electronics, control systems, and prototyping, often beginning with developing a mobile platform. This paper focuses on designing and implementing an omnidirectional mecanum platform, encom...
Nowadays, there has been a growing interest in the use of mobile robots for various applications,where the analysis of the operational environment is a crucial component to conduct our special tasks ormissions. Themain aimof thiswork was to implement artificial intelligence (AI) for object detection and distance estimation navigating the developed unmanned platform in unknown environments. Conventional approach...
Cooperative robotics is exponentially gaining strength in scientific research, especially regarding the cooperation between ground mobile robots and Unmanned Aerial Vehicles (UAVs), where the remaining challenges are equipollent to its potential uses in different fields, such as agriculture and electrical tower inspections. Due to the complexity involved in the process, precision landing by UAVs onmoving roboti...
Localization is a crucial skill in mobile robotics because the robot needs to make reasonable navigation decisions to complete its mission. Many approaches exist to implement localization, but artificial intelligence can be an interesting alternative to traditional localization techniques based on model calculations. This work proposes a machine learning approach to solve the localization problem in the RobotAt...
The use of machine learning in embedded systems is an interesting topic, especially with the growth in popularity of the Internet of Things (IoT). The capacity of a system, such as a robot, to self-localize, is a fundamental skill for its navigation and decision-making processes. This work focuses on the feasibility of using machine learning in a Raspberry Pi 4 Model B, solving the localization problem using im...