Wastewater surveillance for pathogens using the reverse transcription-polymerase chain reaction (RT-PCR) is an effective, resource-efficient tool for gathering additional community-level public health information, including the incidence and/or prevalence and trends of coronavirus disease-19 (COVID-19). Surveillance of SARS-CoV-2 in wastewater may provide an early-warning signal of COVID-19 infections in a comm...
Changes in the occurrence, distribution, and seasonal variation of waterborne pathogens due to global climate change may increase the risk of human exposure to these microorganisms, thus heightening the need for more reliable surveillance systems. Routine monitoring of drinking water supplies and recreational waters is performed using fecal indicator microorganisms, such as Escherichia coli, Enterococcus spp., ...
A next-generation sequencing (NGS) approach, in conjunction with culture-based methods, was used to examine fungal and prokaryotic communities for the presence of potential pathogens in beach sands throughout Portugal. Culture-based fungal enumeration revealed low and variable concentrations of the species targeted (yeasts and dermatophytes), which were underrepresented in the community characterized by NGS tar...
An Illumina next-generation sequencing (NGS) approach, in conjunction with culture-based methods, was used to examine fungal and prokaryotic communities for the presence of potential pathogens in backshore sands at beaches throughout Portugal. We hypothesized that the same predominant taxa, present at high relative abundances, would be detected by both methods. Furthermore, traditional methods were anticipated ...
Recent studies suggest that sand can serve as a vehicle for exposure of humans to pathogens at beach sites, resulting in increased health risks. Sampling for microorganisms in sand should be considered for inclusion in regulatory programmes aimed at protecting recreational beach users from infectious disease. In an effort to provide recommendations for sand sampling programmes in the original article, we outlin...