Imbalanced datasets present a challenge in machine learning, especially in binary classification scenarios where one class significantly outweighs the other. This imbalance often leads to models favoring the majority class, resulting in inadequate predictions for the minority class, specifically in false negatives. In response to this issue, this work introduces the MinFNR ensemble algorithm, designed to minimi...
Este documento pretende complementar a bibliografia da unidade curricular Extração de Conhecimento de Dados (Data Mining) oferecida nos cursos de mestrado MEIW (Mestrado em Engenharia Informática e Tecnologia Web) e MBB (Mestrado em Bioestatística e Biometria). A inferência causal quantifica o efeito de uma intervenção. O problema central é que não é possível observar simultaneamente os resultados com e sem tra...
Este documento pretende complementar a bibliografia da unidade curricular Extração de Conhecimento de Dados (Data Mining) oferecida nos cursos de mestrado MEIW (Mestrado em Engenharia Informática e Tecnologia Web) e MBB (Mestrado em Bioestatística e Biometria). Para além do debate Rubin versus Pearl que está longe de ser resolvido, a primeira dificuldade em causalidade é a notação. Quando iniciamos o estudo da ...
In uplift modeling, the goal is to identify high-value customers based on persuadable customers, those who make a purchase only if contacted. To achieve this, uplift modeling combines machine learning techniques with causal inference, allowing businesses to refine their customer targeting strategies and focus efforts where they are most profitable. This study proposes a practical and reproducible two-phase proc...
Forecasted treasury is crucial for controlling cash flows and maintaining the company's liquidity, enabling the planning of future needs and addressing challenges such as seasonal fluctuations. The project developed in Power BI involves defining data sources, performing ETL, creating a data model, and generating treasury reports. The Menu functionality allows for navigation, and the Weekly Cashflow displays wee...
The manufacturing industry rapidly evolves to meet higher demands, customization, and global competitiveness. Key Performance Indicators (KPIs) are essential for monitoring and optimizing production efficiency. With Industry 4.0 advancements, including AI, IoT, and Big Data, integrating AI with Business Intelligence (BI) and real-time KPIs enables proactive, data-driven decision-making. However, many industries...
Os artigos estão organizados por ordem de chegada. O primeiro artigo é o resultado do projeto final da licenciatura em informática, tratando a modelação baseada em agentes para suporte de segurança em gestão de risco. O segundo artigo estuda a competição First Challenger no no âmbito open açoriano de robótica. O terceiro artigo é o resultado de uma dissertação de mestrado, tratando um problema real de tesourari...
Data maturity models are an important and current topic since they allow organizations to plan their medium and long-term goals. However, most maturity models do not follow what is done in digital technologies regarding experimentation. Data Science appears in the literature related to Business Intelligence (BI) and Business Analytics (BA). This work presents a new data science maturity model that combines prev...
The manufacturing industry rapidly evolves to meet higher demands, customization, and global competitiveness. Key Performance Indicators (KPIs) are essential for monitoring and optimizing production efficiency. With Industry 4.0 advancements, including AI, IoT, and Big Data, integrating AI with Business Intelligence (BI) and real-time KPIs enables proactive, data-driven decision-making. However, many industries...
Os 5 níveis fundamentais da Engenharia de Dados e Business Intelligence: procurar, transformar, armazenar, agregar e visualizar os dados.