The incorporation of interface passivation structures in ultrathin Cu(In,Ga)Se2 based solar cells is shown. The fabrication used an industry scalable lithography technique—nanoimprint lithography (NIL)—for a 15 × 15 cm2 dielectric layer patterning. Devices with a NIL nanopatterned dielectric layer are benchmarked against electron-beam lithography (EBL) patterning, using rigid substrates. The NIL patterned devic...
The incorporation of interface passivation structures in ultrathin Cu(In,Ga)Se2 based solar cells is shown. The fabrication used an industry scalable lithography technique—nanoimprint lithography (NIL)—for a 15 × 15 cm2 dielectric layer patterning. Devices with a NIL nanopatterned dielectric layer are benchmarked against electron-beam lithography (EBL) patterning, using rigid substrates. The NIL patterned devic...
The incorporation of interface passivation structures in ultrathin Cu(In,Ga)Se2 based solar cells is shown. The fabrication used an industry scalable lithography technique—nanoimprint lithography (NIL)—for a 15 × 15 cm2 dielectric layer patterning. Devices with a NIL nanopatterned dielectric layer are benchmarked against electron-beam lithography (EBL) patterning, using rigid substrates. The NIL patterned devic...
The effects of introducing a passivation layer at the rear of ultrathin Copper Indium Gallium di-Selenide Cu(In,Ga)Se2 (CIGS) solar cells is studied. Point contact structures have been created on 25 nm Al2O3 layer using e-beam lithography. Reference solar cells with ultrathin CIGS layers provide devices with average values of light to power conversion efficiency of 8.1 % while for passivated cells values reache...