ABSTRACT: When considering materials to be used as active layers in solar cells, an important required parameter is the proper knowledge of their elemental composition. It should be heavily controlled during growth in order to obtain the desired band gap and to decrease the recombination defects and then increase the solar cell electrical performance. Ion beam analytical (IBA) techniques and, in particular, par...
ABSTRACT: The control of morphology and crystallinity of solution-processed perovskite thin-films for solar cells is the key for further enhancement of the devices’ power conversion efficiency and stability. Improving crystallinity and increasing grain size of perovskite films is a proven way to boost the devices’ performance and operational robustness, nevertheless this has only been achieved with high-tempera...
Dye sensitized solar cells (DSCs) have received considerable attention once this technology offers economic and environmental advantages over conventional photovoltaic (PV) devices. The PV performance of a DSC relies on the characteristics of its photoanode, which typically consists of a nanocrystalline porous TiO2 film, enabled with a large adsorptive surface area. Dye molecules that capture photons from light...
Capture of sunlight has attracted an increasing interest in the scientific community and triggered the development of efficient and cheap photovoltaic devices. Amongst recent generation technologies for solar energy conversion, dye-sensitized solar cells (DSCs) show an optimal trade-off between high-conversion efficiency and low-cost manufacturing. For the last two decades, significant progress has been made an...
Dye sensitized solar cells (DSCs) have received considerable attention once this technology offers economic and environmental advantages over conventional photovoltaic (PV) devices. The PV performance of a DSC relies on the characteristics of its photoanode, which typically consists of a nanocrystalline porous TiO2 film, enabled with a large adsorptive surface area. Dye molecules that capture photons from light...
Dye sensitized solar cells (DSC’s) have received considerable attention once this technology offers economic and environmental advantages over conventional photovoltaic (PV) devices. A DSC photoanode typically consists of a nanocrystalline porous TiO2 film, endowed with a large adsorptive surface area. Dye molecules that capture photons during device operation are attached to the film nanoparticles. The effecti...