Liposome-like nanoarchitectures containing manganese ferrite nanoparticles covered or decorated with gold were developed for application in dual cancer therapy, combining chemotherapy and photothermia. The magnetic/plasmonic nanoparticles were characterized using XRD, UV/Visible absorption, HR-TEM, and SQUID, exhibiting superparamagnetic behavior at room temperature. The average size of the gold-decorated nanop...
Magnetoliposomes containing calcium ferrite (CaFe2O4) nanoparticles were developed and characterized for the first time. CaFe2O4 nanoparticles were covered by a lipid bilayer or entrapped in liposomes forming, respectively, solid or aqueous magnetoliposomes as nanocarriers for new antitumor drugs. The magnetic nanoparticles were characterized by UV/Visible absorption, XRD, HR-TEM, and SQUID, exhibiting sizes of...
Magnetoliposomes containing superparamagnetic manganese ferrite nanoparticles were tested as nanocarriers for two new promising antitumor drugs, a N-(3-methoxyphenyl)thieno[3,2-b]pyridin-7-amine (1) and a N-(2-methoxy-phenyl)thieno[3,2-b] pyridin-7-amine (2). The fluorescence emission of both compounds was studied in different polar and non-polar media, evidencing a strong intramolecular charge transfer charact...