Early identification of wheel defects can prevent serious damage to railways, considerably lowering maintenance costs for both railway administrations and rolling stock operators. Within this context, an unsupervised methodology based on artificial intelligence techniques is presented, which allows the detection and classification of out-of-roundness damage wheels, such as wheel flats and polygonal wheels, base...
Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this work is to present an unsupervised methodology to identify out-of-roundness (OOR) damage wheels, such as wheel flats and polygonal wheels. This automatic damage identification algorithm is based on the vertical acceleration evaluated on the rails using a virtual wayside monitoring system an...