Tendon injuries and tendinopathies are increasingly prevalent health problems currently lacking effective treatments. Tissue engineering offers promising strategies to boost the low innate regenerative ability of tendons. Within this context, the simultaneous leveraging of both physical and biochemical cues by engineered scaffolding systems can be explored to promote a stronger tenogenic response from stem cell...
A major obstacle in biofabrication is replicating the organization of the extracellular matrix and cellular patterns found in anisotropic tissues within bioengineered constructs. While magnetically-assisted 3D bioprinting techniques have the potential to create scaffolds that mimic natural biological structures, they currently lack the ability to accurately control the dispersion of magnetic substances within t...
Tendon diseases are prevalent health concerns for which current therapies present limited success, in part due to the intrinsically low regenerative ability of tendons. Therefore, tissue engineering presents a potential to improve this outcome. Here, we hypothesize that a concurrent control over both biophysical and biochemical stimuli will boost the tenogenic commitment of stem cells, thus promoting regenerati...
Relevant in vitro models emulating tendinopathies are highly needed to study these diseases and develop better treatments. We have recently proposed a new strategy that allows the automated 3D writing of microphysiological systems (MPS) embedded into its own biomimetic fibrillar support platform based on the self-assembling of cellulose nanocrystals (CNCs). Here, we explored this CNC platform for writing humani...
Most tissues of the human body present hierarchical fibrillar extracellular matrices that have a strong influence over their physicochemical properties and biological behavior. Of great interest is the introduction of this fibrillar structure to hydrogels, particularly due to the water-rich composition, cytocompatibility and tunable properties of this class of biomaterials. Here, the main bottom-up fabrication ...
The lack of representative in vitro models recapitulating human tendon (patho)physiology is among the major factors hindering consistent progress in the knowledge-based development of adequate therapies for tendinopathy.Here, an organotypic 3D tendon-on-chip model is designed that allows studying the spatiotemporal dynamics of its cellular and molecular mechanisms.Combining the synergistic effects of a bioactiv...
Tendinopathies are poorly understood diseases for which treatment remains challenging. Relevant in vitro models to study human tendon physiology and pathophysiology are therefore highly needed. Here we propose the automated 3D writing of tendon microphysiological systems (MPSs) embedded in a biomimetic fibrillar support platform based on cellulose nanocrystals (CNCs) self-assembly. Tendon decellularized extra...
Designing functional, vascularized, human scale in vitro models with biomimetic architectures and multiple cell types is a highly promising strategy for both a better understanding of natural tissue/organ development stages to inspire regenerative medicine, and to test novel therapeutics on personalized microphysiological systems. Extrusion-based 3D bioprinting is an effective biofabrication technology to engin...
Tendon mimetic scaffolds that recreate the tendon hierarchical structure and niche have increasing potential to fully restore tendon functionality. However, most scaffolds lack biofunctionality to boost the tenogenic differentiation of stem cells. In this study, we assessed the role of platelet-derived extracellular vesicles (EVs) in stem cellsâ tenogenic commitment using a 3D bioengineered in vitro tendon mode...
Tendon injuries represent over 30–50% of musculoskeletal disorders worldwide, yet the available therapies do not provide complete tendon repair/regeneration and full functionality restor-ing. Extracellular vesicles (EVs), membrane-enclosed nanoparticles, have emerged as the next breakthrough in tissue engineering and regenerative medicine to promote endogenous tissue regen-eration. Here, we developed a 3D human...