Selective COX-2 inhibitors such as etoricoxib (ETX) are potentially indicated for the treatment of intestinal inflammatory disorders. However, their systemic administration provokes some off-site secondary effects, decreasing the desirable local effectiveness. To circumvent such limitations, herein an ETX delivery system based on electrospun fibrous meshes (eFMs) was proposed. ETX at different concentrations (1...
Tissue engineering strategies for tendon repair and regeneration rely heavily on the use of tendon derived cells. However, these cells frequently undergo phenotypic drift in vitro, which compromises their therapeutic potential. In order to maintain the phenotype of tendon derived cells in vitro, microenvironmental cues (biophysical, biochemical and/or biological in origin) have been used to better imitate the c...
Osteoporosis is characterized by bone loss. The present study aims to investigate the effects of bovine colostrum (BC) on bone metabolism using ovariectomized (OVX) and orchidectomized (ORX) rat models. Twenty-seven-week-old Wistar Han rats were randomly assigned as: (1) placebo control, (2) BC supplementation dose 1 (BC1: 0.5 g/day/OVX, 1 g/day/ORX), (3) BC supplementation dose 2 (BC2: 1 g/day/OVX, 1.5 g/day/O...
The high prevalence of bone defects has become a worldwide problem. Despite the significant amount of research on the subject, the available therapeutic solutions lack efficiency. Autografts, the most common used approaches to treat bone defects have limitations such as donor site morbidity, pain and lack of donor site. Marine resources emerge as an attractive alternative to extract bioactive compounds for fu...
Fish sarcoplasmic proteins (FSP) constitute around 25–30% of the total fish muscle protein. As the FSP are water soluble, FSP were isolated from fresh cod (Gadus morhua) by centrifugation. By SDS-PAGE, it was possible to determine the composition of FSP extracts (FSP-E). The FSP-E undergo denaturation at 44.12 ± 2.34° C, as characterized by differential scanning calorimetry thermograms (DSC). The secondary stru...
Chapter 17. Cork biomass biocomposites: lightweight and sustainable materials.
Recent advances in tissue engineering and regenerative medicine have shown that combining biomaterials, cells, and bioactive molecules are important to promote the regeneration of damaged tissues or as therapeutic systems. Natural origin polymers have been used as matrices in such applications due to their biocompatibility and biodegradability. This article provides an up-to-date review on the most promising na...
The aim of this chapter is to describe in detail the advances in polyethylene reinforced with lignocellulosic material. Indeed, the successful employment of natural based materials to reinforce/improve the properties of polyolefins has been growing in a wide range of applications. Firstly, basic concepts and terminology adopted in the lignocellulosic composite materials are reviewed. The objective is to bring t...
This work addresses to the preparation of biocomposites resulting from the combination of different biodegradable aliphatic polyesters with cork (30 wt.%). The lignocellulosic biomass with closed cellular structure was compounded with poly(L-lactic acid) (PLLA), polyhydroxybutyrate-co-hydroxyvalerate (PHBV), poly-ε-caprolactone (PCL) and starch-poly-ε-caprolactone (SPCL) blend using a twin-screw extruder prio...
The thermo-oxidative stability of polypropylene (PP) in composites containing 15 wt.% of cork and the performance of selected cork extracts as stabilizing additives for PP was evaluated by Oxidation Induction Time (OIT) and by Oxidation Onset Temperature (OOT). The results showed that cork increases the OIT of PP in the composite and it was identified that the cork extractives fraction is responsible for such b...