This paper presents the fabrication of a silicon neural probe using low-cost microfabrication technologies, such as thin-films deposition, blade dicing, and photolithography. The metal stack that forms the 9 microelectrodes of 50 × 50 µm2 area, the tracks and the pads were made of Ti and Pt, while the passivation stack was SiO2 and Si3N4. The fabricated probe was characterized using electrochemical impedance sp...
In optogenetic studies, the brain is exposed to high-power light sources and inadequate power density or exposure time can cause cell damage from overheating (typically temperature increasing of 2 ∘ C). In order to overcome overheating issues in optogenetics, this paper presents a neural tool capable of assessing tissue temperature over time, combined with the capability of electrical recording and optical stim...