The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber. We report searches for new physics appearing through few-keV-scale electron recoils, using the experiment’s first exposure of 60 live days and a fiducial mass of 5.5 t. The data are found to be consistent with a background-only hypothesis, and limits are set on models for new physics including solar ...
9 pages, 8 figures. See https://doi.org/10.1103/PhysRevLett.131.041002 for a data release related to this paper; The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) wit...
The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon timeprojection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinol...
LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMPnucleon scattering sensitivity above 1.4 × 10−48 cm2 for a WIMP mass of 40 GeV/c2 and a 1000 days exposure. LZ achieves this sensitivity through a combination of a large 5.6 t fiducial volume, active inner and outer veto systems, and radio-pure construction using materials with inherently low radioactivity content. Th...
The Large Underground Xenon (LUX) dark matter experiment aims to detect rare low-energy interactions from Weakly Interacting Massive Particles (WIMPs). The radiogenic backgrounds in the LUX detector have been measured and compared with Monte Carlo simulation. Measurements of LUX high-energy data have provided direct constraints on all background sources contributing to the background model. The expected backgro...
http://www.sciencedirect.com/science/article/B6TJM-4VBDGYK-3/2/955ce6ee62330f437f352d46bbc8f500
The XENON experiment aims at the direct detection of dark matter in the form of WIMPs (Weakly Interacting Massive Particles) via their elastic scattering off Xenon nuclei. With 1 ton of LXe distributed in ten identical modules, the proposed XENON1T experiment will achieve a sensitivity more than a factor of thousand beyond current limits.The detectors are time projection chambers operated in dual (liquid/gas) p...
The technique to realize 3D position sensitivity in a two-phase xenon time projection chamber (XeTPC) is described. Results from a prototype detector (XENON3) are presented.; http://www.sciencedirect.com/science/article/B6TVD-4R68DXJ-13/1/c7a25befd9bec275706d42709c6eb3c6