ABSTRACT The goal of this study was to use the spatial bootstrap method to model the spatial dependence structure of soybean yield and soil chemical attributes in an agricultural area. The study involved developing confidence intervals in probability plots to determine the probability distributions assumed by the data; determine the empirical distributions of the semivariances and model parameters, allowing to ...
ABSTRACT: In geostatistical modeling of soil chemical properties, one or more influential observations in a dataset may impair the construction of interpolation maps and their accuracy. An alternative to avoid the problem would be to use most robust models, based on distributions that have heavier tails. Therefore, this study proposes a spatial linear model based on the slash distribution (SSLM) in order to cha...
ABSTRACT This study aims to quantify the uncertainties associated to the parameters of a Gaussian spatial linear model (GSLM) and the assumption of normality residuals in the modeling of the spatial dependence of the soybean yield as a function of soil chemical attributes. The spatial bootstrap methods were used to determine the point and interval estimators associated with the model parameters. Hypothesis test...
ABSTRACT: The t-Student distribution has been used to the spatial dependence modelling of soybean yield as an alternative to the normal distribution, being used for data with heavier tails or discrepant values. However, a usual Student t-distribution does not allow direct comparisons of geostatistical methods with a normal distribution. The aim of this study was to assess the soybean yield spatial variability t...
O uso das ferramentas da geoestatística, aliadas à agricultura de precisão permitem o acompanhamento das áreas agrícolas produtoras de soja, estabelecendo as relações de dependência espacial entre os pontos amostrados. A modelagem da estrutura de variabilidade espacial possibilita a construção de mapas temáticos dos atributos estudados, utilizando como método de interpolação a krigagem. Porém, a presença de val...
The modeling and estimation of the parameters that define the spatial dependence structure of a regionalized variable by geostatistical methods are fundamental, since these parameters, underlying the kriging of unsampled points, allow the construction of thematic maps. One or more atypical observations in the sample data can affect the estimation of these parameters. Thus, the assessment of the combined influen...
A modelagem da estrutura de dependência espacial pela abordagem da geoestatística é fundamental para a definição de parâmetros que definem esta estrutura, e que são utilizados na interpolação de valores em locais não amostrados pela técnica de krigagem. Entretanto, a estimação de parâmetros pode ser muito afetada pela presença de observações atípicas nos dados amostrados. O desenvolvimento deste trabalho teve p...