The innate graded structural and compositional profile of musculoskeletal tissue interfaces is disrupted and replaced by fibrotic tissue in the context of disease and degeneration. Tissue engineering strategies focused on the restoration of the transitional complexity found in those junctions present special relevance for regenerative medicine. Herein, we developed a gelatin-based multiphasic hydrogel system, w...
Gravity influences physical and biological processes, especially during development and homeostasis of several tissues in the human body. Studies under altered gravity have been receiving great attention towards a better understanding of microgravity, hypogravity (<1g) or hypergravity (>1g) induced alterations. In the present work, the influence of simulated hypergravity over human tendon-derived cells (hTDCs) ...
Stem cell therapies hold potential to stimulate tendon regeneration and homeostasis, which is maintained in response to the native mechanical environment. Activins are members of the mechano-responsive TGF-β superfamily that participates in the regulation of several downstream biological processes. Mechanosensitive membrane receptors such as activin can be activated in different types of stem cells via magneti...
Tendon regeneration can be undermined by the formation of fibrous adhesions (scar tissue) between the healing tendon and the surrounding tissues. Scarring is associated with the recruitment of inflammatory cells such as macrophages and mast cells[1]. To tackle this issue we advocate the implementation of postoperative rehabilitation programmes to control inflammation levels and scarring, ensuring this way bette...
Guided Tissue Regeneration, as well as various combinatory therapies have been employed in the repair of periodontal defects with some success; however an optimal strategy capable of restoring the anatomy and functionality of the lost periodontal tissues is still to be achieved. Platelet Lysate (PL) has great potential for tissue regeneration, as source of growth factors involved in essential stages of wound he...
ecent achievements in the area of tissue engineering (TE) have enabled the development of three-dimensional (3D) cell-laden hydrogels as in vitro platforms that closely mimic the 3D scenario found in native tissues. These platforms are extensively used to evaluate cellular behavior, cell-cell interactions, and tissue-like formation in highly defined settings. In this study, we propose a scalable and flexible 3D...
Damages in the maxillofacial bones are frequent in humans following trauma, metabolic diseases, neoplasia, or inflammatory processes. Many of the available treatments to regenerate bone are often ineffective. The goal of this work was to assess the in vivo behavior of an innovative double-layered scaffold based on a blend of starch and polycaprolactone (SPCL) that comprises a membrane obtained by solvent castin...
Carrageenans are highly sulphated galactans, well-known for their thermogelation properties which have been extensively exploited in food and cosmetics industry but poorly explored in the biomedicine field. In this study we have assessed thein vitroandin vivobiocompatibility of κ-carrageenan hydrogels that have been explored for regenerative medicine and tissue engineering applications. Thein vitrocytotoxicity ...
Values of serum tartrate-resistant acid phosphatase (TRAP)activity were obtained in adult dogs and its biological variability was assessed. Nine healthy skeletally mature Portuguese Podengo dogs were used for the determination of TRAP, total and bone alkaline phosphatase serum activities, and also to styudy their relashionship with serum minerals, namely calcium (Ca) phosphorous (P),and magnesium (Mg).The serum...