38 documents found, page 1 of 4

Sort by Issue Date

Effective reduction of unnecessary biopsies through a deep-learning-assisted ag...

ProCAncer-I Consortium; Rodrigues, Nuno M.; Almeida, José Guilherme de; Verde, Ana Sofia Castro; Gaivão, Ana Mascarenhas; Bireiro, Carlos

ProCAncer-I Consortium, Rodrigues, N. M., Almeida, J. G. D., Verde, A. S. C., Gaivão, A. M., Bireiro, C., Santiago, I., Ip, J., Belião, S., Matos, C., Vanneschi, L., Tsiknakis, M., Marias, K., Regge, D., Silva, S., & Papanikolaou, N. (2025). Effective reduction of unnecessary biopsies through a deep-learning-assisted aggressive prostate cancer detector. Scientific Reports, 15, 1-15. Article 15211. https://doi.o...


Introducing Crossover in SLIM-GSGP

Pietropolli, Gloria; Farinati, Davide; Manzoni, Luca; Castelli, Mauro; Silva, Sara; Vanneschi, Leonardo

Pietropolli, G., Farinati, D., Manzoni, L., Castelli, M., Silva, S., & Vanneschi, L. (2025). Introducing Crossover in SLIM-GSGP. In B. Xue, L. Manzoni, & I. Bakurov (Eds.), Genetic Programming: 28th European Conference, EuroGP 2025, Held as Part of EvoStar 2025, Trieste, Italy, April 23–25, 2025, Proceedings (pp. 103-119). (Lecture Notes in Computer Science; Vol. 15609). Springer Nature Switzerland AG. https://...


Corrigendum to “Analysis of domain shift in whole prostate gland, zonal and les...

ProCAncer-I Consortium; Rodrigues, Nuno Miguel; de Almeida, José Guilherme; Castro Verde, Ana Sofia; Gaivão, Ana Mascarenhas; Bilreiro, Carlos

ProCAncer-I Consortium, Rodrigues, N. M., de Almeida, J. G., Castro Verde, A. S., Gaivão, A. M., Bilreiro, C., Santiago, I., Ip, J., Belião, S., Moreno, R., Matos, C., Vanneschi, L., Tsiknakis, M., Marias, K., Regge, D., Silva, S., & Papanikolaou, N. (2024). Corrigendum to “Analysis of domain shift in whole prostate gland, zonal and lesions segmentation and detection, using multicentric retrospective data” [Com...


Analysis of domain shift in whole prostate gland, zonal and lesions segmentatio...

ProCAncer-I Consortium; Rodrigues, Nuno Miguel; Almeida, José Guilherme de; Verde, Ana Sofia Castro; Gaivão, Ana Mascarenhas; Bilreiro, Carlos

Rodrigues, N. M., Almeida, J. G. D., Verde, A. S. C., Gaivão, A. M., Bilreiro, C., Santiago, I., Ip, J., Belião, S., Moreno, R., Matos, C., Vanneschi, L., Tsiknakis, M., Marias, K., Regge, D., Silva, S., & Papanikolaou, N. (2024). Analysis of domain shift in whole prostate gland, zonal and lesions segmentation and detection, using multicentric retrospective data. Computers in Biology and Medicine, 171, 1-22. Ar...


Exploring SLUG

Rodrigues, Nuno M.; Batista, João E.; La Cava, William; Vanneschi, Leonardo; Silva, Sara

Rodrigues, N. M., Batista, J. E., La Cava, W., Vanneschi, L., & Silva, S. (2024). Exploring SLUG: Feature Selection Using Genetic Algorithms and Genetic Programming. SN Computer Science, 5(1), 1-17. [91]. https://doi.org/10.1007/s42979-023-02106-3 --- Open access funding provided by FCT|FCCN (b-on). This work was partially supported by the FCT, Portugal, through funding of the LASIGE Research Unit (UIDB/00408/2...


M6GP

Batista, João Eduardo; Rodrigues, Nuno Miguel; Vanneschi, Leonardo; Silva, Sara

Batista, J. E., Rodrigues, N. M., Vanneschi, L., & Silva, S. (2024). M6GP: Multiobjective Feature Engineering. In 2024 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/CEC60901.2024.10612107 --- This work was supported by FCT through the LASIGE (UIDB/00408/20203 and UIDP/00408/20204) and MagIC/NOVA IMS (UIDB/04l52/2020) ...


Deep Learning Features Can Improve Radiomics-Based Prostate Cancer Aggressivene...

Rodrigues, Nuno M.; Almeida, José Guilherme de; Rodrigues, Ana; Vanneschi, Leonardo; Matos, Celso; Lisitskaya, Maria; Uysal, Aycan; Silva, Sara

Rodrigues, N. M., Almeida, J. G. D., Rodrigues, A., Vanneschi, L., Matos, C., Lisitskaya, M., Uysal, A., Silva, S., & Papanikolaou, N. (2024). Deep Learning Features Can Improve Radiomics-Based Prostate Cancer Aggressiveness Prediction. JCO Clinical Cancer Informatics, 8, Article e2300180. https://doi.org/10.1200/CCI.23.00180 --- Supported in part by FCT, Portugal, through funding of the LASIGE Research Unit (U...


Slim

Rosenfeld, Liah; Farinati, Davide; Rasteiro, Diogo; Pietropolli, Gloria; Rebuli, Karina Brotto; Silva, Sara; Vanneschi, Leonardo

Rosenfeld, L., Farinati, D., Rasteiro, D., Pietropolli, G., Rebuli, K. B., Silva, S., & Vanneschi, L. (2024). Slim: a Python Library for the non-bloating SLIM-GSGP algorithm [poster]. 1. Poster session presented at Data Research Meetup by MagIC, Lisbon, Portugal. --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de In...


Geometric semantic GP with linear scaling

Nadizar, Giorgia; Sakallioglu, Berfin; Garrow, Fraser; Silva, Sara; Vanneschi, Leonardo

Nadizar, G., Sakallioglu, B., Garrow, F., Silva, S., & Vanneschi, L. (2024). Geometric semantic GP with linear scaling: Darwinian versus Lamarckian evolution. Genetic Programming And Evolvable Machines, 25(2), 1-24. Article 17. https://doi.org/10.1007/s10710-024-09488-0 --- Open access funding provided by Università degli Studi di Trieste within the CRUI-CARE Agreement. This work was partially supported by FCT,...


Geometric Semantic Genetic Programming with Normalized and Standardized Random ...

Bakurov, Illya; Muñoz Contreras, José Manuel; Castelli, Mauro; Rodrigues, Nuno Miguel Duarte; Silva, Sara; Trujillo, Leonardo; Vanneschi, Leonardo

Bakurov, I., Muñoz Contreras, J. M., Castelli, M., Rodrigues, N., Silva, S., Trujillo, L., & Vanneschi, L. (2024). Geometric Semantic Genetic Programming with Normalized and Standardized Random Programs. Genetic Programming And Evolvable Machines, 25, 1-29. Article 6. https://doi.org/10.1007/s10710-024-09479-1 --- This work was partially supported by FCT, Portugal, through funding of research units MagIC/NOVA I...


38 Results

Queried text

Refine Results

Author





















More optionsLess options

Date









More optionsLess options

Document Type






Funding



Access rights




Resource


Subject





















More optionsLess options