Antineoplastic drugs are pharmaceuticals that have been raising concerns among the scientific community due to: (i) their increasing prescription in the fight against the disease of the twentieth century (cancer); (ii) their recalcitrance to conventional wastewater treatments; (iii) their poor environmental biodegradability; and (iv) their potential risk to any eukaryotic organism. This emerges the urgency in f...
The rise of nanofiltration technologies holds great promise for creating more effective and affordable techniques aiming to remove undesirable pollutants from wastewaters. Despite nanofiltration's promising potential in removing antineoplastic drugs from liquid matrices, the limited information on this topic makes it important to estimate the rejection rates for a larger number of compounds, particularly the em...
Over the past years, there has been an increasing concern about the occurrence of antineoplastic drugs in water bodies. The incomplete removal of these pharmaceuticals from wastewaters has been confirmed by several scientists, making it urgent to find a reliable technique or a combination of techniques capable to produce clean and safe water. In this work, the combination of nanofiltration and ozone (O3)-based ...
One of the most common treatments for cancer disease requires the administration of cytostatics, which are very effective drugs in the elimination of cancerous cells, but are toxic for healthy tissues. After being administered to patients, they are excreted and frequently reach natural water bodies, due to their poor degradation in wastewater treatment plants (WWTPs), posing a global threat to the environment a...