5 documents found, page 1 of 1

Sort by Issue Date

Artificial neural networks classify cotton genotypes for fiber length.

CARVALHO, L. P. de; TEODORO, P. E.; BARROSO, L. M. A.; FARIAS, F. J. C.; MORELLO, C. de L.; NASCIMENTO, M.

Fiber length is the main trait that needs to be improved in cotton. However, the presence of genotypes x environments interaction for this trait can hinder the recommendation of genotypes with greater length fibers. The aim of this study was to evaluate the adaptability and stability of the fibers length of cotton genotypes for recommendation to the Midwest and Northeast, using artificial neural networks (ANNs)...

Date: 2018   |   Origin: Oasisbr

Regularized quantile regression for SNP marker estimation of pig growth curves.

BARROSO, L. M. A.; NASCIMENTO, M.; NASCIMENTO, A. C. C.; SILVA, F. F.; SERÃO, N. V. L.; CRUZ, C. D.; RESENDE, M. D. V. de; SILVA, F. L.; AZEVEDO, C. F.

Background: Genomic growth curves are generally defined only in terms of population mean; an alternative approach that has not yet been exploited in genomic analyses of growth curves is the Quantile Regression (QR). This methodology allows for the estimation of marker effects at different levels of the variable of interest. We aimed to propose and evaluate a regularized quantile regression for SNP marker effect...

Date: 2018   |   Origin: Oasisbr

Regularized quantile regression applied to genome-enabled prediction of quantit...

NASCIMENTO, M.; SILVA, F. F. e; RESENDE, M. D. V. de; CRUZ, C. D.; NASCIMENTO, A. C. C.; VIANA, J. M. S.; AZEVEDO, C. F.; BARROSO, L. M. A.

Genomic selection (GS) is a variant of marker-assisted selection, in which genetic markers covering the whole genome predict individual genetic merits for breeding. GS increases the accuracy of breeding values (BV) prediction. Although a variety of statistical models have been proposed to estimate BV in GS, few methodologies have examined statistical challenges based on non-normal phenotypic distributions, e.g....

Date: 2018   |   Origin: Oasisbr

Bayesian approach increases accuracy when selecting cowpea genotypes with high ...

BARROSO, L. M. A.; TEODORO, P. E.; NASCIMENTO, M.; TORRES, F. E.; SANTOS, A. dos; CORRÊA, A. M.; SAGRILO, E.; CORRÊA, C. C. G.; SILVA, F. A.; CECCON, G.

Date: 2016   |   Origin: Oasisbr

Factor analysis applied to genome prediction for high-dimensional phenotypes in...

TEIXEIRA, F. R. F.; NASCIMENTO, M.; NASCIMENTO, A. C. C.; SILVA, F. F. e; CRUZ, C. D.; AZEVEDO, C. F.; PAIXÃO, D. M.; BARROSO, L. M. A.; VERARDO, L. L.

The aim of the present study was to propose and evaluate the use of factor analysis (FA) in obtaining latent variables (factors) that represent a set of pig traits simultaneously, for use in genome-wide selection (GWS) studies. We used crosses between outbred F2 populations of Brazilian Piau X commercial pigs. Data were obtained on 345 F2 pigs, genotyped for 237 SNPs, with 41 traits. FA allowed us to obtain fou...

Date: 2016   |   Origin: Oasisbr

5 Results

Queried text

Refine Results

Author





















Date



Document Type


Access rights


Resource


Subject