This paper presents a low-noise inverter-based current-mode instrumentation amplifier with tunable gain and bandwidth for electromyogram (EMG) and electrooculogram (EOG) biopotential signals, targeting low input noise while maintaining low power consumption. The gain tuning method is based on pseudo-resistors, whereas the bandwidth is tunable due to a varactor system that is controlled by the same control volta...
Mechanisms towards the automatic analog integrated circuit layout design have been an intensive research topic in the past few decades. Still, the industrial environment has no automatic approach established. The advances of machine learning applications in electronic design automation come with the promise to change this reality. This paper proposes a deep learning generative model for the placement ‘‘optimiza...
The design of analog and mixed-signal integrated circuits (ICs) is intricate due to the continuous nature of the signals handled. Still, it is also strongly affected by the physical implementation of analog devices on the circuits’ layout. The circuit layout corresponds to the physical implementation of an analog IC used in fabrication that describes its devices geometrically. As circuits’ integration and devic...
This book consists of the research, design and implementation, from sizing to layout with parasitic extraction and yield estimation, of a low-power, low-noise amplifier for biomedical and healthcare applications of bio-potential signals, particularly focusing on the electromyography and electrooculography.
This paper presents the design of a low-power low-noise amplifier for biomedical and healthcare applications, focusing on lectromyography and electrooculography. The signals operate in different broad bands, yet follow an impulse-shape transmission, being suitable to be applied and detected by the same receiver. The biopotential sensing amplifiers usually have a major impact in power and noise performance of an...
This paper presents fuzzy c-means-based yield estimation (FUZYE), a methodology that reduces the time impact caused by Monte Carlo (MC) simulations in the context of analog integrated circuits (ICs) yield estimation, enabling it for yield optimization with population-based algorithms, e.g., the genetic algorithm (GA). MC analysis is the most general and reliable technique for yield estimation, yet the considera...
This paper presents a new family of innovative operational transconductance amplifier (OTA) topologies based on CMOS inverter structures, with improved gain and energy-efficiency. This new family of OTA designs is suitable for biomedical and healthcare circuits and systems, due to the high energy-efficiency, improved gain and low level of noise contribution, when compared to the state-of-the-art in this field. ...
In this paper, we formulate the electricity retailers’ short-term decision-making problem in a liberalized retail market as a multi-objective optimization model. Retailers with light physical assets, such as generation and storage units in the distribution network, are considered. Following advances in smart grid technologies, electricity retailers are becoming able to employ incentive-based demand response (DR...