Today’s complex world is defined by digital changes in educational paradigms to which E-learning has contributed significantly, and as such, accurate prediction methods are needed for student performance modeling. In this paper a new and complex model is proposed, namely the Hyperdynamic Adaptive Learning Fusion (HALF) model that leverages adaptive computing paradigms and artificial intelligence to build a fusi...
The advancement of the Internet of Medical Things (IoMT) has transformed healthcare delivery by enabling real-time health monitoring. However, it introduces critical challenges related to latency and, more importantly, the secure handling of sensitive patient data. Traditional cloud-based architectures often struggle with latency and data protection, making them inefficient for real-time healthcare scenarios. T...
The rapid growth in wireless communication demands has led to a surge in research on technologies capable of enhancing communication reliability, coverage, and energy efficiency. Among these, uncrewed aerial vehicles (UAV) and reconfigurable intelligent surfaces (RIS) have emerged as promising solutions. Prior research on using deep reinforcement learning (DRL) to integrate RIS with UAV concentrated on enhancin...
Ethereum has emerged as a major platform for decentralized apps and smart contracts with the heightened interest in cryptocurrencies in recent years. Investors and market participants in the cryptocurrency space will find it increasingly important to use reliable price prediction models as Ethereum's popularity grows. To better estimate Ethereum prices around the world, we propose "EtherVoyant," a novel hybrid ...