In recent years, the manufacturing processes have undergone a profound transformation, driven by the rapid evolution of additive manufacturing (AM) technologies. What began as a tool primarily for prototyping through stereolithography has now expanded into a versatile and innovative field capable of producing functional, end-use components across a wide range of industries. From fused deposition modeling (FDM) ...
Microneedles (MN) technology has emerged as a transformative tool within the biomedical field, offering innovative solutions to challenges in drug delivery, diagnostics, and therapeutic applications. This review article provides an in-depth exploration of the diverse perspectives and applications of MNs, shedding light on their pivotal role in shaping the future of biomedical research and clinical practice. It ...
Olive mill wastewaters (OMWW) generated during olive oil extraction represent a significant environmental challenge due to their high organic matter content, acidic pH, phenolic content, and toxicity. Their composition varies widely depending on the extraction method and remains difficult to treat, particularly for small-scale producers lacking access to complex infrastructure. This study evaluates the combined...
Nanofluids (NFs), consisting of nanoparticles (NPs) suspended in base fluids, have attracted growing interest due to their superior physicochemical properties and multifunctional potential. In this review, conventional and green NF technology aspects, including synthesis routes, formulation, and applications, are discussed. Conventional NFs, involving NPs synthesized using physical and chemical approaches, have...
This study investigates the heat transfer performance of three types of heat exchangers: one made of pure polydimethylsiloxane (PDMS), another incorporating recycled graphite (PDMS + Graphite 30 mass%), and a third using commercial aluminium nanoparticles (PDMS + Aluminium 30 mass%). Thermal performance was evaluated by measuring the thermal conductivity of the materials, analysing experimental convection tests...
Polydimethylsiloxane (PDMS) is an elastomer that has received primary attention from researchers due to its excellent physical, chemical, and thermal properties, together with biocompatibility and high flexibility properties. Another material that has been receiving attention is beeswax because it is a natural raw material, extremely ductile, and biodegradable, with peculiar hydrophobic properties. These materi...
Polydimethylsiloxane (PDMS) has become a popular material in microfluidic and macroscale in vitro models due to its elastomeric properties and versatility. PDMS-based biomodels are widely used in blood flow studies, offering a platform for improving flow models and validating numerical simulations. This review highlights recent advances in bioflow studies conducted using both PDMS microfluidic devices and macro...
Thermal regulation has assumed a central role in space expeditions ever since the inception of Sputnik-1 in 1957. Throughout the years, numerous techniques have been developed to regulate temperatures in spacecraft and space habitats. Initially, passive systems like heat shields and thermal linings were employed, while newer missions embrace active cooling using fluids like ammonia and water. With significant a...
Polydimethylsiloxane (PDMS) has attracted great attention in various fields due to its excellent properties, but its inherent hydrophobicity presents challenges in many applications that require controlled wettability. The purpose of this review is to provide a comprehensive overview of some key strategies for modifying the wettability of PDMS surfaces by providing the main traditional methods for this modifica...
This study investigates the impact of hemodynamics on real intracranial aneurysms (IAs) using experiments and computational fluid dynamics (CFD) simulations. A particle tracking velocimetry (PTV) approach was used to study the vortical structures inside a real aneurysm and validate numerical simulations performed at a steady regime for different flow rates. Moreover, this and two additional patient-specific cas...