21 documents found, page 1 of 3

Sort by Issue Date

Gold Single Atom Doped Defective Nanoporous Copper Octahedrons for Electrocatal...

Zhao, Yang; Wang, Yanan; Yu, Zhipeng; Song, Chao; Wang, Jingwei; Huang, Haoliang; Meng, Lijian; Liu, Miao; Liu, Lifeng

Electrocatalytic CO2 reduction into high-value multicarbon products offers a sustainable approach to closing the anthropogenic carbon cycle and contributing to carbon neutrality, particularly when renewable electricity is used to power the reaction. However, the lack of efficient and durable electrocatalysts with high selectivity for multicarbons severely hinders the practical application of this promising tech...


Atomic Dispersion of Scandium in Electrochemically Reduced Copper Oxide Nanoshe...

Zhao, Yang; Zeng, Binwen; Huang, Haoliang; Yang, Huanhuan; Yu, Zhipeng; Song, Chao; Wang, Jingwei; Xu, Kaiyang; Xiang, Xinyi; Wang, Wei; Lin, Fei

Converting CO2 into value-added chemicals and fuels through electrochemical CO2 reduction reaction (CO2RR) has been acknowledged as a disruptive technology for chemical industry and an important means to realizing carbon neutrality. However, it remains challenging to achieve high selectivity for C2+ products at a large current density with a low overpotential. Herein, we report a scandium (Sc) single-atom-doped...


Sulfur and phosphorus co-doped FeCoNiCrMn high-entropy alloys as efficient sulf...

Yu, Zhipeng; Boukhvalov, Danil W.; Tan, Hao; Xiong, Dehua; Feng, Chuangshi; Wang, Jingwei; Wang, Wei; Zhao, Yang; Xu, Kaiyang; Su, Weifeng; Xiang, Xinyi

Seawater electrolysis (SWE) represents a promising approach to green hydrogen (H2) production but currently faces substantial challenges such as the interference of chlorine chemistry and high energy consumption. In this work, we demonstrate that by replacing the energy-demanding oxygen evolution reaction (OER) with the sulfion oxidation reaction (SOR) and by implementing the concept of bipolar membrane (BPM) e...


Defective Ru-doped α-MnO2 nanorods enabling efficient hydrazine oxidation for e...

Yu, Zhipeng; Si, Chaowei; Sabaté, Ferran; LaGrow, Alec P.; Tai, Zhixin; Diaconescu, Vlad Martin; Simonelli, Laura; Meng, Lijian; Sabater, Maria J.

Proton exchange membrane water electrolysis (PEMWE) showes substantial advantages over the conventional alkaline water electrolysis (AWE) for power-to-hydrogen (PtH) conversion, given the faster response and wider dynamic current range of the PEMWE technology. However, PEMWE is currently still expensive due partly to the high voltage needed to operate at high current densities and inevitable usage of precious i...


Defective Ru-doped α-MnO2 nanorods enabling efficient hydrazine oxidation for e...

Yu, Zhipeng; Si, Chaowei; Sabaté, Ferran; LaGrow, Alec P.; Tai, Zhixin; Diaconescu, Vlad Martin; Simonelli, Laura; Meng, Lijian; Sabater, Maria J.

Proton exchange membrane water electrolysis (PEMWE) showes substantial advantages over the conventional alkaline water electrolysis (AWE) for power-to-hydrogen (PtH) conversion, given the faster response and wider dynamic current range of the PEMWE technology. However, PEMWE is currently still expensive due partly to the high voltage needed to operate at high current densities and inevitable usage of precious i...


Towards an improved electrocatalytic material for detection of polyphenols base...

Bento, M. Fátima; Amorim, Isilda; Yu, Zhipeng; Liu, Lifeng

The design of advanced materials with catalytic activity for detection of a target molecule is key to construct a sensitive electrochemical sensor. Transition metal phosphides (TMPs) have recently attracted substantial interest and are widely investigated as electrode material in the field of energy conversion/storage. TMPs have also been exploited for electrochemical sensing showing promising results for molec...


Highly Efficient and Stable Saline Water Electrolysis Enabled by Self‐Supported...

Yu, Zhipeng; Li, Yifan; Martin‐Diaconescu, Vlad; Simonelli, Laura; Ruiz Esquius, Jonathan; Amorim, Isilda; Araujo, Ana; Meng, Lijian

Direct seawater electrolysis is proposed as a potential low-cost approach to green hydrogen production, taking advantage of the vastly available seawater and large-scale offshore renewable energy being deployed. However, developing efficient, earth-abundant electrocatalysts that can survive under harsh corrosive conditions for a long time is still a significant technical challenge. Herein, the fabrication of a ...


Iridium–Iron Diatomic Active Sites for Efficient Bifunctional Oxygen Electrocat...

Yu, Zhipeng; Si, Chaowei; LaGrow, Alec P.; Tai, Zhixin; Caliebe, Wolfgang A.; Tayal, Akhil; Sampaio, Maria J.; Sousa, Juliana P. S.; Amorim, Isilda

Diatomic catalysts, particularly those with heteronuclear active sites, have recently attracted considerable attention for their advantages over single-atom catalysts in reactions involving multielectron transfers. Herein, we report bimetallic iridium−iron diatomic catalysts (IrFe−N−C) derived from metal−organic frameworks in a facile wet chemical synthesis followed by postpyrolysis. We use various advanced cha...


Bifunctional atomically dispersed ruthenium electrocatalysts for efficient bipo...

Yu, Zhipeng; Si, Chaowei; Escobar-Bedia, Francisco Javier; LaGrow, Alec P.; Xu, Junyuan; Sabater, Maria J.; Amorim, Isilda; Araujo, Ana

Atomically dispersed catalysts (ADCs) have recently drawn considerable interest for use in water electrolysis to produce hydrogen, because they allow for maximal utilization of metal species, particularly the expensive and scarce platinum group metals. Herein, we report the electrocatalytic performance of atomically dispersed ruthenium catalysts (Ru ADCs) with ultralow Ru loading (0.2 wt%). The as-obtained Ru A...


Novel Quasi‐Liquid K‐Na Alloy as a Promising Dendrite‐Free Anode for Rechargeab...

Tai, Zhixin; Li, Yi; Liu, Yajie; Zhao, Lanling; Ding, Yu; Lu, Ziyu; Peng, Zhijian; Meng, Lijian; Yu, Guihua; Liu, Lifeng

Rechargeable potassium metal batteries are promising energy storage devices with potentially high energy density and markedly low cost. However, eliminating dendrite growth and achieving a stable electrode/electrolyte interface are the key challenges to tackle. Herein, a novel "quasi-liquid" potassium-sodium alloy (KNA) anode comprising only 3.5 wt% sodium (KNA-3.5) is reported, which exhibits outstanding elect...


21 Results

Queried text

Refine Results

Author





















Date











Document Type


Funding



Access rights



Resource



Subject